Strangeness Physics at CLAS in the 6 GeV Era PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Strangeness Physics at CLAS in the 6 GeV Era PDF full book. Access full book title Strangeness Physics at CLAS in the 6 GeV Era by . Download full books in PDF and EPUB format.

Strangeness Physics at CLAS in the 6 GeV Era

Strangeness Physics at CLAS in the 6 GeV Era PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
A very brief overview is presented of varied strangeness-physics studies that have been conducted with the CLAS system in the era of 6 GeV beam at Jefferson Lab. A full bibliography of articles related to open strangeness production is given, together with some physics context for each work. One natural place where these studies could be continued, using a K L beam and the GlueX detector, is in the further investigation of the [Lambda](1405) baryon. The line shapes and cross sections of this state were found, using photoproduction at CLAS, to differ markedly in the three possible [Sigma][pi] final states. The analogous strong-interaction reactions using a K L beam could further bring this phenomenon into focus. 1. The CLAS program ran from 1998 to 2012, during the time when the maximum Jefferson Lab beam energy was 6 GeV. An important thrust of this program was to investigate the spectrum of N * and [Delta] * (non-strange) baryon resonances using photo-and electro-production reactions. To this end, final states containing strange particles (K mesons and low-mass hyperons) played a significant role. The reason for this is partly due to favorable kinemat-ics. When the total invariant energy W (= √ s) of a baryonic system exceeds 1.6 GeV it becomes possible to create the lightest strangeness-containing final state, K + [Lambda]. This is a two-body final state that is straightforward to reconstruct in the CLAS detector system [1], and theoretically it is easier to deal with two-body reaction amplitudes than with three-and higher-body reaction amplitudes. In the mass range W > 1.6 GeV the decay modes of excited nucleons tend to not to favor two-body [pi]-nucleon final states but rather multi-pion states. As input to partial-wave decompositions and resonance-extraction models, therefore, the strangeness-containing final states of high-mass nucleon excitations have had importance. Excited baryons decay through all possible channels simultaneously, constrained by unitarity of course, and channel-coupling is crucial to determining the spectrum of excita-tions. Within this mix of amplitudes, however, the KY decay modes have proven useful. The end result has been, as summarized in the recent edition of the Review of Particle Properties [2], clearer definition of the spectrum of baryonic excitations, with definite contributions from the strangeness sector channels. To this end, strangeness photoproduction cross sections measurements at CLAS for the K + [Lambda], K + [Sigma] 0 and K 0 [Sigma] + channels on a proton target were published [3-6]. Cross sections are not enough, in general, to define the reaction mechanism, including the underlying N * excitation spectrum. Photoproduction of pseudo-scalar mesons is described by four complex amplitudes, leading to fifteen spin observables in addition to the cross section. Full knowledge of these spin observables would exhaust the information that can be gleaned experimentally about any given reaction channel. Here the hyperonic channels offer another advantage when compared with the non-strange reaction channels: the polarization of most hyperons can be measured directly through their parity-violating weak decay asymmetries. Unlike 163.