Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 1119815037
Category : Mathematics
Languages : en
Pages : 1090
Book Description
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Reinforcement Learning and Stochastic Optimization
Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 1119815037
Category : Mathematics
Languages : en
Pages : 1090
Book Description
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Publisher: John Wiley & Sons
ISBN: 1119815037
Category : Mathematics
Languages : en
Pages : 1090
Book Description
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Scientific and Technical Aerospace Reports
Stochastic Systems
Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371
Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371
Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.
Linear Stochastic Control Systems
Author: Goong Chen
Publisher: CRC Press
ISBN: 9780849380754
Category : Business & Economics
Languages : en
Pages : 404
Book Description
Linear Stochastic Control Systems presents a thorough description of the mathematical theory and fundamental principles of linear stochastic control systems. Both continuous-time and discrete-time systems are thoroughly covered. Reviews of the modern probability and random processes theories and the Itô stochastic differential equations are provided. Discrete-time stochastic systems theory, optimal estimation and Kalman filtering, and optimal stochastic control theory are studied in detail. A modern treatment of these same topics for continuous-time stochastic control systems is included. The text is written in an easy-to-understand style, and the reader needs only to have a background of elementary real analysis and linear deterministic systems theory to comprehend the subject matter. This graduate textbook is also suitable for self-study, professional training, and as a handy research reference. Linear Stochastic Control Systems is self-contained and provides a step-by-step development of the theory, with many illustrative examples, exercises, and engineering applications.
Publisher: CRC Press
ISBN: 9780849380754
Category : Business & Economics
Languages : en
Pages : 404
Book Description
Linear Stochastic Control Systems presents a thorough description of the mathematical theory and fundamental principles of linear stochastic control systems. Both continuous-time and discrete-time systems are thoroughly covered. Reviews of the modern probability and random processes theories and the Itô stochastic differential equations are provided. Discrete-time stochastic systems theory, optimal estimation and Kalman filtering, and optimal stochastic control theory are studied in detail. A modern treatment of these same topics for continuous-time stochastic control systems is included. The text is written in an easy-to-understand style, and the reader needs only to have a background of elementary real analysis and linear deterministic systems theory to comprehend the subject matter. This graduate textbook is also suitable for self-study, professional training, and as a handy research reference. Linear Stochastic Control Systems is self-contained and provides a step-by-step development of the theory, with many illustrative examples, exercises, and engineering applications.
Lectures on Stochastic Programming
Author: Alexander Shapiro
Publisher: SIAM
ISBN: 0898718759
Category : Mathematics
Languages : en
Pages : 447
Book Description
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
Publisher: SIAM
ISBN: 0898718759
Category : Mathematics
Languages : en
Pages : 447
Book Description
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 398
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 398
Book Description
Encyclopedia of Optimization
Author: Christodoulos A. Floudas
Publisher: Springer Science & Business Media
ISBN: 0387747583
Category : Mathematics
Languages : en
Pages : 4646
Book Description
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Publisher: Springer Science & Business Media
ISBN: 0387747583
Category : Mathematics
Languages : en
Pages : 4646
Book Description
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".
Systems Modelling and Optimization Proceedings of the 18th IFIP TC7 Conference
Author: Michael P. Polis
Publisher: Routledge
ISBN: 1351411861
Category : Mathematics
Languages : en
Pages : 528
Book Description
Top researchers in optimization and control from around the world gathered in Detroit for the 18th annual IFIP TC7 Conference on Systems Modelling and Optimization held in July 1997. The papers presented in this volume were carefully selected from among the 250 plenary, invited, and contributed works presented at the conference. The editors chose these papers to represent the myriad and diverse range of topics within the field and to disseminate important new results. It includes recent results on a broad variety of modelling and control applications, particularly automotive modelling and control, along with recent theoretical advances.
Publisher: Routledge
ISBN: 1351411861
Category : Mathematics
Languages : en
Pages : 528
Book Description
Top researchers in optimization and control from around the world gathered in Detroit for the 18th annual IFIP TC7 Conference on Systems Modelling and Optimization held in July 1997. The papers presented in this volume were carefully selected from among the 250 plenary, invited, and contributed works presented at the conference. The editors chose these papers to represent the myriad and diverse range of topics within the field and to disseminate important new results. It includes recent results on a broad variety of modelling and control applications, particularly automotive modelling and control, along with recent theoretical advances.
Government-wide Index to Federal Research & Development Reports
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1028
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 1028
Book Description