Author: Peter Kall
Publisher: Springer Science & Business Media
ISBN: 1441977295
Category : Mathematics
Languages : en
Pages : 439
Book Description
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)
Stochastic Linear Programming
Author: Peter Kall
Publisher: Springer Science & Business Media
ISBN: 1441977295
Category : Mathematics
Languages : en
Pages : 439
Book Description
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)
Publisher: Springer Science & Business Media
ISBN: 1441977295
Category : Mathematics
Languages : en
Pages : 439
Book Description
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)
Stochastic Decomposition
Author: Julia L. Higle
Publisher: Springer Science & Business Media
ISBN: 1461541158
Category : Mathematics
Languages : en
Pages : 237
Book Description
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.
Publisher: Springer Science & Business Media
ISBN: 1461541158
Category : Mathematics
Languages : en
Pages : 237
Book Description
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.
Stochastic Linear Programming
Author: P. Kall
Publisher: Springer Science & Business Media
ISBN: 3642662528
Category : Business & Economics
Languages : en
Pages : 103
Book Description
Todaymanyeconomists, engineers and mathematicians are familiar with linear programming and are able to apply it. This is owing to the following facts: during the last 25 years efficient methods have been developed; at the same time sufficient computer capacity became available; finally, in many different fields, linear programs have turned out to be appropriate models for solving practical problems. However, to apply the theory and the methods of linear programming, it is required that the data determining a linear program be fixed known numbers. This condition is not fulfilled in many practical situations, e. g. when the data are demands, technological coefficients, available capacities, cost rates and so on. It may happen that such data are random variables. In this case, it seems to be common practice to replace these random variables by their mean values and solve the resulting linear program. By 1960 various authors had already recog nized that this approach is unsound: between 1955 and 1960 there were such papers as "Linear Programming under Uncertainty", "Stochastic Linear Pro gramming with Applications to Agricultural Economics", "Chance Constrained Programming", "Inequalities for Stochastic Linear Programming Problems" and "An Approach to Linear Programming under Uncertainty".
Publisher: Springer Science & Business Media
ISBN: 3642662528
Category : Business & Economics
Languages : en
Pages : 103
Book Description
Todaymanyeconomists, engineers and mathematicians are familiar with linear programming and are able to apply it. This is owing to the following facts: during the last 25 years efficient methods have been developed; at the same time sufficient computer capacity became available; finally, in many different fields, linear programs have turned out to be appropriate models for solving practical problems. However, to apply the theory and the methods of linear programming, it is required that the data determining a linear program be fixed known numbers. This condition is not fulfilled in many practical situations, e. g. when the data are demands, technological coefficients, available capacities, cost rates and so on. It may happen that such data are random variables. In this case, it seems to be common practice to replace these random variables by their mean values and solve the resulting linear program. By 1960 various authors had already recog nized that this approach is unsound: between 1955 and 1960 there were such papers as "Linear Programming under Uncertainty", "Stochastic Linear Pro gramming with Applications to Agricultural Economics", "Chance Constrained Programming", "Inequalities for Stochastic Linear Programming Problems" and "An Approach to Linear Programming under Uncertainty".
Stochastic Linear Programming Algorithms
Author: Janos Mayer
Publisher: Taylor & Francis
ISBN: 1351413694
Category : Computers
Languages : en
Pages : 164
Book Description
A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
Publisher: Taylor & Francis
ISBN: 1351413694
Category : Computers
Languages : en
Pages : 164
Book Description
A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
Introduction to Stochastic Programming
Author: John R. Birge
Publisher: Springer Science & Business Media
ISBN: 0387226184
Category : Mathematics
Languages : en
Pages : 427
Book Description
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Publisher: Springer Science & Business Media
ISBN: 0387226184
Category : Mathematics
Languages : en
Pages : 427
Book Description
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Lectures on Stochastic Programming
Author: Alexander Shapiro
Publisher: SIAM
ISBN: 0898718759
Category : Mathematics
Languages : en
Pages : 447
Book Description
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
Publisher: SIAM
ISBN: 0898718759
Category : Mathematics
Languages : en
Pages : 447
Book Description
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
Stochastic Linear Programming Algorithms
Author: Janos Mayer
Publisher: CRC Press
ISBN: 9789056991449
Category : Computers
Languages : en
Pages : 174
Book Description
A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
Publisher: CRC Press
ISBN: 9789056991449
Category : Computers
Languages : en
Pages : 174
Book Description
A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
Stochastic Programming
Author: Willem K. Klein Haneveld
Publisher: Springer Nature
ISBN: 3030292193
Category : Business & Economics
Languages : en
Pages : 255
Book Description
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
Publisher: Springer Nature
ISBN: 3030292193
Category : Business & Economics
Languages : en
Pages : 255
Book Description
This book provides an essential introduction to Stochastic Programming, especially intended for graduate students. The book begins by exploring a linear programming problem with random parameters, representing a decision problem under uncertainty. Several models for this problem are presented, including the main ones used in Stochastic Programming: recourse models and chance constraint models. The book not only discusses the theoretical properties of these models and algorithms for solving them, but also explains the intrinsic differences between the models. In the book’s closing section, several case studies are presented, helping students apply the theory covered to practical problems. The book is based on lecture notes developed for an Econometrics and Operations Research course for master students at the University of Groningen, the Netherlands - the longest-standing Stochastic Programming course worldwide.
Stochastic Programming Problems with Probability and Quantile Functions
Author: Andreĭ Ivanovich Kibzun
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 330
Book Description
The concept of a system as an entity in its own right has emerged with increasing force in the past few decades in, for example, the areas of electrical and control engineering, economics, ecology, urban structures, automaton theory, operational research and industry. The more definite concept of a large-scale system is implicit in these applications, but is particularly evident in fields such as the study of communication networks, computer networks and neural networks. The Wiley-Interscience Series in Systems and Optimization has been established to serve the needs of researchers in these rapidly developing fields. It is intended for works concerned with developments in quantitative systems theory, applications of such theory in areas of interest, or associated methodology. Of related interest Stochastic Programming Peter Kall, University of Zurich, Switzerland and Stein W. Wallace, University of Trondheim, Norway Stochastic Programming is the first textbook to provide a thorough and self-contained introduction to the subject. Carefully written to cover all necessary background material from both linear and non-linear programming, as well as probability theory, the book draws together the methods and techniques previously described in disparate sources. After introducing the terms and modelling issues when randomness is introduced in a deterministic mathematical programming model, the authors cover decision trees and dynamic programming, recourse problems, probabilistic constraints, preprocessing and network problems. Exercises are provided at the end of each chapter. Throughout, the emphasis is on the appropriate use of the techniques, rather than on the underlying mathematical proofs and theories, making the book ideal for researchers and students in mathematical programming and operations research who wish to develop their skills in stochastic programming.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 330
Book Description
The concept of a system as an entity in its own right has emerged with increasing force in the past few decades in, for example, the areas of electrical and control engineering, economics, ecology, urban structures, automaton theory, operational research and industry. The more definite concept of a large-scale system is implicit in these applications, but is particularly evident in fields such as the study of communication networks, computer networks and neural networks. The Wiley-Interscience Series in Systems and Optimization has been established to serve the needs of researchers in these rapidly developing fields. It is intended for works concerned with developments in quantitative systems theory, applications of such theory in areas of interest, or associated methodology. Of related interest Stochastic Programming Peter Kall, University of Zurich, Switzerland and Stein W. Wallace, University of Trondheim, Norway Stochastic Programming is the first textbook to provide a thorough and self-contained introduction to the subject. Carefully written to cover all necessary background material from both linear and non-linear programming, as well as probability theory, the book draws together the methods and techniques previously described in disparate sources. After introducing the terms and modelling issues when randomness is introduced in a deterministic mathematical programming model, the authors cover decision trees and dynamic programming, recourse problems, probabilistic constraints, preprocessing and network problems. Exercises are provided at the end of each chapter. Throughout, the emphasis is on the appropriate use of the techniques, rather than on the underlying mathematical proofs and theories, making the book ideal for researchers and students in mathematical programming and operations research who wish to develop their skills in stochastic programming.
Applications of Stochastic Programming
Author: Stein W. Wallace
Publisher: SIAM
ISBN: 9780898718799
Category : Mathematics
Languages : en
Pages : 724
Book Description
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.
Publisher: SIAM
ISBN: 9780898718799
Category : Mathematics
Languages : en
Pages : 724
Book Description
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.