Stochastic Gradient Descent in Continuous Time PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Gradient Descent in Continuous Time PDF full book. Access full book title Stochastic Gradient Descent in Continuous Time by Justin Sirignano. Download full books in PDF and EPUB format.

Stochastic Gradient Descent in Continuous Time

Stochastic Gradient Descent in Continuous Time PDF Author: Justin Sirignano
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description


Stochastic Gradient Descent in Continuous Time

Stochastic Gradient Descent in Continuous Time PDF Author: Justin Sirignano
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Book Description


On the Theory and Applications of Stochastic Gradient Descent in Continuous Time

On the Theory and Applications of Stochastic Gradient Descent in Continuous Time PDF Author: Louis Sharrock
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Real and Stochastic Analysis

Real and Stochastic Analysis PDF Author: M. M. Rao
Publisher: Springer Science & Business Media
ISBN: 1461220548
Category : Mathematics
Languages : en
Pages : 411

Book Description
As in the case of the two previous volumes published in 1986 and 1997, the purpose of this monograph is to focus the interplay between real (functional) analysis and stochastic analysis show their mutual benefits and advance the subjects. The presentation of each article, given as a chapter, is in a research-expository style covering the respective topics in depth. In fact, most of the details are included so that each work is essentially self contained and thus will be of use both for advanced graduate students and other researchers interested in the areas considered. Moreover, numerous new problems for future research are suggested in each chapter. The presented articles contain a substantial number of new results as well as unified and simplified accounts of previously known ones. A large part of the material cov ered is on stochastic differential equations on various structures, together with some applications. Although Brownian motion plays a key role, (semi-) martingale theory is important for a considerable extent. Moreover, noncommutative analysis and probabil ity have a prominent role in some chapters, with new ideas and results. A more detailed outline of each of the articles appears in the introduction and outline to assist readers in selecting and starting their work. All chapters have been reviewed.

Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models PDF Author: Jaya P. N. Bishwal
Publisher: Springer Nature
ISBN: 3031038614
Category : Mathematics
Languages : en
Pages : 634

Book Description
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.

Optimization for Machine Learning

Optimization for Machine Learning PDF Author: Suvrit Sra
Publisher: MIT Press
ISBN: 026201646X
Category : Computers
Languages : en
Pages : 509

Book Description
An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Machine Learning Refined

Machine Learning Refined PDF Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597

Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow PDF Author: Aurélien Géron
Publisher: "O'Reilly Media, Inc."
ISBN: 149203259X
Category : Computers
Languages : en
Pages : 851

Book Description
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

An Introduction to the Numerical Simulation of Stochastic Differential Equations

An Introduction to the Numerical Simulation of Stochastic Differential Equations PDF Author: Desmond J. Higham
Publisher: SIAM
ISBN: 161197643X
Category : Mathematics
Languages : en
Pages : 293

Book Description
This book provides a lively and accessible introduction to the numerical solution of stochastic differential equations with the aim of making this subject available to the widest possible readership. It presents an outline of the underlying convergence and stability theory while avoiding technical details. Key ideas are illustrated with numerous computational examples and computer code is listed at the end of each chapter. The authors include 150 exercises, with solutions available online, and 40 programming tasks. Although introductory, the book covers a range of modern research topics, including Itô versus Stratonovich calculus, implicit methods, stability theory, nonconvergence on nonlinear problems, multilevel Monte Carlo, approximation of double stochastic integrals, and tau leaping for chemical and biochemical reaction networks. An Introduction to the Numerical Simulation of Stochastic Differential Equations is appropriate for undergraduates and postgraduates in mathematics, engineering, physics, chemistry, finance, and related disciplines, as well as researchers in these areas. The material assumes only a competence in algebra and calculus at the level reached by a typical first-year undergraduate mathematics class, and prerequisites are kept to a minimum. Some familiarity with basic concepts from numerical analysis and probability is also desirable but not necessary.

Dynamical Systems and Numerical Analysis

Dynamical Systems and Numerical Analysis PDF Author: Andrew Stuart
Publisher: Cambridge University Press
ISBN: 9780521645638
Category : Mathematics
Languages : en
Pages : 708

Book Description
The first three chapters contain the elements of the theory of dynamical systems and the numerical solution of initial-value problems. In the remaining chapters, numerical methods are formulated as dynamical systems and the convergence and stability properties of the methods are examined.

Algorithms for Convex Optimization

Algorithms for Convex Optimization PDF Author: Nisheeth K. Vishnoi
Publisher: Cambridge University Press
ISBN: 1108633994
Category : Computers
Languages : en
Pages : 314

Book Description
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.