Numerical Solution of Stochastic Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Numerical Solution of Stochastic Differential Equations PDF full book. Access full book title Numerical Solution of Stochastic Differential Equations by Peter E. Kloeden. Download full books in PDF and EPUB format.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations PDF Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666

Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations PDF Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666

Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Random Ordinary Differential Equations and Their Numerical Solution

Random Ordinary Differential Equations and Their Numerical Solution PDF Author: Xiaoying Han
Publisher: Springer
ISBN: 981106265X
Category : Mathematics
Languages : en
Pages : 252

Book Description
This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required.

Numerical Integration of Stochastic Differential Equations

Numerical Integration of Stochastic Differential Equations PDF Author: G.N. Milstein
Publisher: Springer Science & Business Media
ISBN: 9401584559
Category : Computers
Languages : en
Pages : 178

Book Description
This book is devoted to mean-square and weak approximations of solutions of stochastic differential equations (SDE). These approximations represent two fundamental aspects in the contemporary theory of SDE. Firstly, the construction of numerical methods for such systems is important as the solutions provided serve as characteristics for a number of mathematical physics problems. Secondly, the employment of probability representations together with a Monte Carlo method allows us to reduce the solution of complex multidimensional problems of mathematical physics to the integration of stochastic equations. Along with a general theory of numerical integrations of such systems, both in the mean-square and the weak sense, a number of concrete and sufficiently constructive numerical schemes are considered. Various applications and particularly the approximate calculation of Wiener integrals are also dealt with. This book is of interest to graduate students in the mathematical, physical and engineering sciences, and to specialists whose work involves differential equations, mathematical physics, numerical mathematics, the theory of random processes, estimation and control theory.

Backward Stochastic Differential Equations

Backward Stochastic Differential Equations PDF Author: N El Karoui
Publisher: CRC Press
ISBN: 9780582307339
Category : Mathematics
Languages : en
Pages : 236

Book Description
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.

Stochastic Differential Equations and Their Numerical Approximations

Stochastic Differential Equations and Their Numerical Approximations PDF Author: Liying Huang
Publisher:
ISBN:
Category : Stochastic differential equations
Languages : en
Pages : 194

Book Description


Numerical Solution of SDE Through Computer Experiments

Numerical Solution of SDE Through Computer Experiments PDF Author: Peter Eris Kloeden
Publisher: Springer Science & Business Media
ISBN: 3642579132
Category : Mathematics
Languages : en
Pages : 304

Book Description
This book provides an easily accessible, computationally-oriented introduction into the numerical solution of stochastic differential equations using computer experiments. It develops in the reader an ability to apply numerical methods solving stochastic differential equations. It also creates an intuitive understanding of the necessary theoretical background. Software containing programs for over 100 problems is available online.

Taylor Approximations for Stochastic Partial Differential Equations

Taylor Approximations for Stochastic Partial Differential Equations PDF Author: Arnulf Jentzen
Publisher: SIAM
ISBN: 1611972000
Category : Mathematics
Languages : en
Pages : 224

Book Description
This book presents a systematic theory of Taylor expansions of evolutionary-type stochastic partial differential equations (SPDEs). The authors show how Taylor expansions can be used to derive higher order numerical methods for SPDEs, with a focus on pathwise and strong convergence. In the case of multiplicative noise, the driving noise process is assumed to be a cylindrical Wiener process, while in the case of additive noise the SPDE is assumed to be driven by an arbitrary stochastic process with H?lder continuous sample paths. Recent developments on numerical methods for random and stochastic ordinary differential equations are also included since these are relevant for solving spatially discretised SPDEs as well as of interest in their own right. The authors include the proof of an existence and uniqueness theorem under general assumptions on the coefficients as well as regularity estimates in an appendix.

An Introduction to Stochastic Differential Equations

An Introduction to Stochastic Differential Equations PDF Author: Lawrence C. Evans
Publisher: American Mathematical Soc.
ISBN: 1470410540
Category : Mathematics
Languages : en
Pages : 161

Book Description
These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).

Proceedings of the Conference on Applied Mathematics and Scientific Computing

Proceedings of the Conference on Applied Mathematics and Scientific Computing PDF Author: Zlatko Drmac
Publisher: Springer Science & Business Media
ISBN: 1402031971
Category : Mathematics
Languages : en
Pages : 347

Book Description
This book brings together contributed papers presenting new results covering different areas of applied mathematics and scientific computing. Firstly, four invited lectures give state-of-the-art presentations in the fields of numerical linear algebra, shape preserving approximation and singular perturbation theory. Then an overview of numerical solutions to skew-Hamiltonian and Hamiltonian eigenvalue problems in system and control theory is given by Benner, Kressner and Mehrmann. The important issue of structure preserving algorithms and structured condition numbers is discussed. Costantini and Sampoli review the basic ideas of the abstract schemes and show that they can be used to solve any problem concerning the construction of spline curves subject to local constraints. Kvasov presents a novel approach in solving the problem of shape preserving spline interpolation. Formulating this problem as a differential multipoint boundary value problem for hyperbolic and biharmonic tension splines he considers its finite difference approximation. Miller and Shishkin consider the Black-Scholes equation that, for some values of the parameters, may be a singularly perturbed problem. They construct a new numerical method, on an appropriately fitted piecewise-uniform mesh, which is parameter-uniformly convergent.