Stochastic Control of Partially Observable Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stochastic Control of Partially Observable Systems PDF full book. Access full book title Stochastic Control of Partially Observable Systems by Alain Bensoussan. Download full books in PDF and EPUB format.

Stochastic Control of Partially Observable Systems

Stochastic Control of Partially Observable Systems PDF Author: Alain Bensoussan
Publisher: Cambridge University Press
ISBN: 052135403X
Category : Mathematics
Languages : en
Pages : 364

Book Description
These systems play an important role in many applications.

Stochastic Control of Partially Observable Systems

Stochastic Control of Partially Observable Systems PDF Author: Alain Bensoussan
Publisher: Cambridge University Press
ISBN: 052135403X
Category : Mathematics
Languages : en
Pages : 364

Book Description
These systems play an important role in many applications.

Mathematical Control Theory for Stochastic Partial Differential Equations

Mathematical Control Theory for Stochastic Partial Differential Equations PDF Author: Qi Lü
Publisher: Springer Nature
ISBN: 3030823318
Category : Science
Languages : en
Pages : 592

Book Description
This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.

Partially Observable Linear Systems Under Dependent Noises

Partially Observable Linear Systems Under Dependent Noises PDF Author: Agamirza E. Bashirov
Publisher: Birkhäuser
ISBN: 3034880227
Category : Science
Languages : en
Pages : 358

Book Description
This book discusses the methods of fighting against noise. It can be regarded as a mathematical view of specific engineering problems with known and new methods of control and estimation in noisy media. From the reviews: "An excellent reference on the complete sets of equations for the optimal controls and for the optimal filters under wide band noises and shifted white noises and their possible application to navigation of spacecraft." --MATHEMATICAL REVIEWS

Stochastic Controls

Stochastic Controls PDF Author: Jiongmin Yong
Publisher: Springer Science & Business Media
ISBN: 1461214661
Category : Mathematics
Languages : en
Pages : 459

Book Description
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

Reinforcement Learning

Reinforcement Learning PDF Author: Marco Wiering
Publisher: Springer Science & Business Media
ISBN: 3642276458
Category : Technology & Engineering
Languages : en
Pages : 653

Book Description
Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together they truly represent a state-of-the-art of current reinforcement learning research. Marco Wiering works at the artificial intelligence department of the University of Groningen in the Netherlands. He has published extensively on various reinforcement learning topics. Martijn van Otterlo works in the cognitive artificial intelligence group at the Radboud University Nijmegen in The Netherlands. He has mainly focused on expressive knowledge representation in reinforcement learning settings.

A Concise Introduction to Decentralized POMDPs

A Concise Introduction to Decentralized POMDPs PDF Author: Frans A. Oliehoek
Publisher: Springer
ISBN: 3319289292
Category : Computers
Languages : en
Pages : 146

Book Description
This book introduces multiagent planning under uncertainty as formalized by decentralized partially observable Markov decision processes (Dec-POMDPs). The intended audience is researchers and graduate students working in the fields of artificial intelligence related to sequential decision making: reinforcement learning, decision-theoretic planning for single agents, classical multiagent planning, decentralized control, and operations research.

Stochastic Processes, Finance and Control

Stochastic Processes, Finance and Control PDF Author: Robert J. Elliot
Publisher: World Scientific
ISBN: 9814383309
Category : Mathematics
Languages : en
Pages : 605

Book Description
This Festschrift is dedicated to Robert J Elliott on the occasion of his 70th birthday It brings together a collection of chapters by distinguished and eminent scholars in the fields of stochastic processes, filtering and control, as well as their applications to mathematical finance It presents cutting edge developments in these fields and is a valuable source of references for researchers, graduate students and market practitioners in mathematical finance and financial engineering Topics include the theory of stochastic processes, differential and stochastic games, mathematical finance, filtering and control.

Stochastic Control Theory

Stochastic Control Theory PDF Author: Makiko Nisio
Publisher: Springer
ISBN: 4431551239
Category : Mathematics
Languages : en
Pages : 263

Book Description
This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-max principle, to be precise). Using semi-discretization arguments, we construct the nonlinear semigroups whose generators provide lower and upper Isaacs equations. Concerning partially observable control problems, we refer to stochastic parabolic equations driven by colored Wiener noises, in particular, the Zakai equation. The existence and uniqueness of solutions and regularities as well as Itô's formula are stated. A control problem for the Zakai equations has a nonlinear semigroup whose generator provides the HJB equation on a Banach space. The value function turns out to be a unique viscosity solution for the HJB equation under mild conditions. This edition provides a more generalized treatment of the topic than does the earlier book Lectures on Stochastic Control Theory (ISI Lecture Notes 9), where time-homogeneous cases are dealt with. Here, for finite time-horizon control problems, DPP was formulated as a one-parameter nonlinear semigroup, whose generator provides the HJB equation, by using a time-discretization method. The semigroup corresponds to the value function and is characterized as the envelope of Markovian transition semigroups of responses for constant control processes. Besides finite time-horizon controls, the book discusses control-stopping problems in the same frameworks.

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications PDF Author: Rene Carmona
Publisher: SIAM
ISBN: 1611974232
Category : Mathematics
Languages : en
Pages : 263

Book Description
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.

Partially Observed Markov Decision Processes

Partially Observed Markov Decision Processes PDF Author: Vikram Krishnamurthy
Publisher: Cambridge University Press
ISBN: 1316594785
Category : Technology & Engineering
Languages : en
Pages : 491

Book Description
Covering formulation, algorithms, and structural results, and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. Bringing together research from across the literature, the book provides an introduction to nonlinear filtering followed by a systematic development of stochastic dynamic programming, lattice programming and reinforcement learning for POMDPs. Questions addressed in the book include: when does a POMDP have a threshold optimal policy? When are myopic policies optimal? How do local and global decision makers interact in adaptive decision making in multi-agent social learning where there is herding and data incest? And how can sophisticated radars and sensors adapt their sensing in real time?