Statistical Modeling for Biological Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistical Modeling for Biological Systems PDF full book. Access full book title Statistical Modeling for Biological Systems by Anthony Almudevar. Download full books in PDF and EPUB format.

Statistical Modeling for Biological Systems

Statistical Modeling for Biological Systems PDF Author: Anthony Almudevar
Publisher: Springer
ISBN: 9783030346775
Category : Medical
Languages : en
Pages : 354

Book Description
This book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev’s many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei’s publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev’s collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev’s research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev’s work and recognizes the legacy of his contributions in the biostatistics community.

Statistical Modeling for Biological Systems

Statistical Modeling for Biological Systems PDF Author: Anthony Almudevar
Publisher: Springer
ISBN: 9783030346775
Category : Medical
Languages : en
Pages : 354

Book Description
This book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev’s many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei’s publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev’s collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev’s research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev’s work and recognizes the legacy of his contributions in the biostatistics community.

Statistical Modeling for Biological Systems

Statistical Modeling for Biological Systems PDF Author: Anthony Almudevar
Publisher: Springer Nature
ISBN: 3030346757
Category : Medical
Languages : en
Pages : 361

Book Description
This book commemorates the scientific contributions of distinguished statistician, Andrei Yakovlev. It reflects upon Dr. Yakovlev’s many research interests including stochastic modeling and the analysis of micro-array data, and throughout the book it emphasizes applications of the theory in biology, medicine and public health. The contributions to this volume are divided into two parts. Part A consists of original research articles, which can be roughly grouped into four thematic areas: (i) branching processes, especially as models for cell kinetics, (ii) multiple testing issues as they arise in the analysis of biologic data, (iii) applications of mathematical models and of new inferential techniques in epidemiology, and (iv) contributions to statistical methodology, with an emphasis on the modeling and analysis of survival time data. Part B consists of methodological research reported as a short communication, ending with some personal reflections on research fields associated with Andrei and on his approach to science. The Appendix contains an abbreviated vitae and a list of Andrei’s publications, complete as far as we know. The contributions in this book are written by Dr. Yakovlev’s collaborators and notable statisticians including former presidents of the Institute of Mathematical Statistics and of the Statistics Section of the AAAS. Dr. Yakovlev’s research appeared in four books and almost 200 scientific papers, in mathematics, statistics, biomathematics and biology journals. Ultimately this book offers a tribute to Dr. Yakovlev’s work and recognizes the legacy of his contributions in the biostatistics community.

Modeling Life

Modeling Life PDF Author: Alan Garfinkel
Publisher: Springer
ISBN: 3319597310
Category : Mathematics
Languages : en
Pages : 456

Book Description
This book develops the mathematical tools essential for students in the life sciences to describe interacting systems and predict their behavior. From predator-prey populations in an ecosystem, to hormone regulation within the body, the natural world abounds in dynamical systems that affect us profoundly. Complex feedback relations and counter-intuitive responses are common in nature; this book develops the quantitative skills needed to explore these interactions. Differential equations are the natural mathematical tool for quantifying change, and are the driving force throughout this book. The use of Euler’s method makes nonlinear examples tractable and accessible to a broad spectrum of early-stage undergraduates, thus providing a practical alternative to the procedural approach of a traditional Calculus curriculum. Tools are developed within numerous, relevant examples, with an emphasis on the construction, evaluation, and interpretation of mathematical models throughout. Encountering these concepts in context, students learn not only quantitative techniques, but how to bridge between biological and mathematical ways of thinking. Examples range broadly, exploring the dynamics of neurons and the immune system, through to population dynamics and the Google PageRank algorithm. Each scenario relies only on an interest in the natural world; no biological expertise is assumed of student or instructor. Building on a single prerequisite of Precalculus, the book suits a two-quarter sequence for first or second year undergraduates, and meets the mathematical requirements of medical school entry. The later material provides opportunities for more advanced students in both mathematics and life sciences to revisit theoretical knowledge in a rich, real-world framework. In all cases, the focus is clear: how does the math help us understand the science?

Mathematical Modeling of Biological Systems, Volume I

Mathematical Modeling of Biological Systems, Volume I PDF Author: Andreas Deutsch
Publisher: Springer Science & Business Media
ISBN:
Category : Mathematics
Languages : en
Pages : 408

Book Description
This edited volume contains a selection of chapters that are an outgrowth of the - ropean Conference on Mathematical and Theoretical Biology (ECMTB05, Dresden, Germany, July 2005). The peer-reviewed contributions show that mathematical and computational approaches are absolutely essential for solving central problems in the life sciences, ranging from the organizational level of individual cells to the dynamics of whole populations. The contributions indicate that theoretical and mathematical biology is a diverse and interdisciplinary ?eld, ranging from experimental research linked to mathema- cal modeling to the development of more abstract mathematical frameworks in which observations about the real world can be interpreted, and with which new hypotheses for testing can be generated. Today, much attention is also paid to the development of ef?cient algorithms for complex computation and visualisation, notably in molecular biology and genetics. The ?eld of theoretical and mathematical biology and medicine has profound connections to many current problems of great relevance to society. The medical, industrial, and social interests in its development are in fact indisputable.

Modeling Biological Systems:

Modeling Biological Systems: PDF Author: James W. Haefner
Publisher: Springer Science & Business Media
ISBN: 9780387250113
Category : Science
Languages : en
Pages : 500

Book Description
I Principles 1 1 Models of Systems 3 1. 1 Systems. Models. and Modeling . . . . . . . . . . . . . . . . . . . . 3 1. 2 Uses of Scientific Models . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 3 Example: Island Biogeography . . . . . . . . . . . . . . . . . . . . . 6 1. 4 Classifications of Models . . . . . . . . . . . . . . . . . . . . . . . . 10 1. 5 Constraints on Model Structure . . . . . . . . . . . . . . . . . . . . . 12 1. 6 Some Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1. 7 Misuses of Models: The Dark Side . . . . . . . . . . . . . . . . . . . 13 1. 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 The Modeling Process 17 2. 1 Models Are Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2 Two Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . 18 2. 3 An Example: Population Doubling Time . . . . . . . . . . . . . . . . 24 2. 4 Model Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2. 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Qualitative Model Formulation 32 3. 1 How to Eat an Elephant . . . . . . . . . . . . . . . . . . . . . . . . . 32 3. 2 Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3. 3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3. 4 Errors in Forrester Diagrams . . . . . . . . . . . . . . . . . . . . . . 44 3. 5 Advantages and Disadvantages of Forrester Diagrams . . . . . . . . . 44 3. 6 Principles of Qualitative Formulation . . . . . . . . . . . . . . . . . . 45 3. 7 Model Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3. 8 Other Modeling Problems . . . . . . . . . . . . . . . . . . . . . . . . 49 viii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. 9 Exercises 53 4 Quantitative Model Formulation: I 4. 1 From Qualitative to Quantitative . . . . . . . . . . . . . . . . . Finite Difference Equations and Differential Equations 4. 2 . . . . . . . . . . . . . . . . 4. 3 Biological Feedback in Quantitative Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 4 Example Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. 5 Exercises 5 Quantitative Model Formulation: I1 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 1 Physical Processes 81 . . . . . . . . . . . . . . . 5. 2 Using the Toolbox of Biological Processes 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 3 Useful Functions 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 4 Examples 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 5 Exercises 104 6 Numerical Techniques 107 . . . . . . . . . . . . . . . . . . . . . . . 6. 1 Mistakes Computers Make 107 . . . . . . . . . . . . . . . . . . . . . . . . . . 6. 2 Numerical Integration 110 . . . . . . . . . . . . . . . . 6. 3 Numerical Instability and Stiff Equations 115 . . . . . . . . . . . . . .

Dynamical Systems for Biological Modeling

Dynamical Systems for Biological Modeling PDF Author: Fred Brauer
Publisher: CRC Press
ISBN: 1498774040
Category : Mathematics
Languages : en
Pages : 482

Book Description
Dynamical Systems for Biological Modeling: An Introduction prepares both biology and mathematics students with the understanding and techniques necessary to undertake basic modeling of biological systems. It achieves this through the development and analysis of dynamical systems.The approach emphasizes qualitative ideas rather than explicit computa

Quantitative Biology

Quantitative Biology PDF Author: Brian Munsky
Publisher: MIT Press
ISBN: 0262347113
Category : Science
Languages : en
Pages : 729

Book Description
An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research. The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology. The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text. The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both. Contributors John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michał Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienałtowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber

Analysis Of Biological Systems

Analysis Of Biological Systems PDF Author: Corrado Priami
Publisher: World Scientific
ISBN: 1783266899
Category : Science
Languages : en
Pages : 431

Book Description
Modeling is fast becoming fundamental to understanding the processes that define biological systems. High-throughput technologies are producing increasing quantities of data that require an ever-expanding toolset for their effective analysis and interpretation. Analysis of high-throughput data in the context of a molecular interaction network is particularly informative as it has the potential to reveal the most relevant network modules with respect to a phenotype or biological process of interest.Analysis of Biological Systems collects classical material on analysis, modeling and simulation, thereby acting as a unique point of reference. The joint application of statistical techniques to extract knowledge from big data and map it into mechanistic models is a current challenge of the field, and the reader will learn how to build and use models even if they have no computing or math background. An in-depth analysis of the currently available technologies, and a comparison between them, is also included. Unlike other reference books, this in-depth analysis is extended even to the field of language-based modeling. The overall result is an indispensable, self-contained and systematic approach to a rapidly expanding field of science.

Mathematical Modeling of Complex Biological Systems

Mathematical Modeling of Complex Biological Systems PDF Author: Abdelghani Bellouquid
Publisher: Springer Science & Business Media
ISBN: 0817643958
Category : Science
Languages : en
Pages : 194

Book Description
This book describes the evolution of several socio-biological systems using mathematical kinetic theory. Specifically, it deals with modeling and simulations of biological systems whose dynamics follow the rules of mechanics as well as rules governed by their own ability to organize movement and biological functions. It proposes a new biological model focused on the analysis of competition between cells of an aggressive host and cells of a corresponding immune system. Proposed models are related to the generalized Boltzmann equation. The book may be used for advanced graduate courses and seminars in biological systems modeling.

Statistical Physics for Biological Matter

Statistical Physics for Biological Matter PDF Author: Wokyung Sung
Publisher: Springer
ISBN: 940241584X
Category : Science
Languages : en
Pages : 444

Book Description
This book aims to cover a broad range of topics in statistical physics, including statistical mechanics (equilibrium and non-equilibrium), soft matter and fluid physics, for applications to biological phenomena at both cellular and macromolecular levels. It is intended to be a graduate level textbook, but can also be addressed to the interested senior level undergraduate. The book is written also for those involved in research on biological systems or soft matter based on physics, particularly on statistical physics. Typical statistical physics courses cover ideal gases (classical and quantum) and interacting units of simple structures. In contrast, even simple biological fluids are solutions of macromolecules, the structures of which are very complex. The goal of this book to fill this wide gap by providing appropriate content as well as by explaining the theoretical method that typifies good modeling, namely, the method of coarse-grained descriptions that extract the most salient features emerging at mesoscopic scales. The major topics covered in this book include thermodynamics, equilibrium statistical mechanics, soft matter physics of polymers and membranes, non-equilibrium statistical physics covering stochastic processes, transport phenomena and hydrodynamics. Generic methods and theories are described with detailed derivations, followed by applications and examples in biology. The book aims to help the readers build, systematically and coherently through basic principles, their own understanding of nonspecific concepts and theoretical methods, which they may be able to apply to a broader class of biological problems.