Author: Jean-Francois Dupuy
Publisher: Elsevier
ISBN: 008102374X
Category : Medical
Languages : en
Pages : 194
Book Description
Statistical Methods for Overdispersed Count Data provides a review of the most recent methods and models for such data, including a description of R functions and packages that allow their implementation. All methods are illustrated on datasets arising in the field of health economics. As several tools have been developed to tackle over-dispersed and zero-inflated data (such as adjustment methods and zero-inflated models), this book covers the topic in a comprehensive and interesting manner. - Includes reading on several levels, including methodology and applications - Presents the state-of-the-art on the most recent zero-inflated regression models - Contains a single dataset that is used as a common thread for illustrating all methodologies - Includes R code that allows the reader to apply methodologies
Statistical Methods for Overdispersed Count Data
Author: Jean-Francois Dupuy
Publisher: Elsevier
ISBN: 008102374X
Category : Medical
Languages : en
Pages : 194
Book Description
Statistical Methods for Overdispersed Count Data provides a review of the most recent methods and models for such data, including a description of R functions and packages that allow their implementation. All methods are illustrated on datasets arising in the field of health economics. As several tools have been developed to tackle over-dispersed and zero-inflated data (such as adjustment methods and zero-inflated models), this book covers the topic in a comprehensive and interesting manner. - Includes reading on several levels, including methodology and applications - Presents the state-of-the-art on the most recent zero-inflated regression models - Contains a single dataset that is used as a common thread for illustrating all methodologies - Includes R code that allows the reader to apply methodologies
Publisher: Elsevier
ISBN: 008102374X
Category : Medical
Languages : en
Pages : 194
Book Description
Statistical Methods for Overdispersed Count Data provides a review of the most recent methods and models for such data, including a description of R functions and packages that allow their implementation. All methods are illustrated on datasets arising in the field of health economics. As several tools have been developed to tackle over-dispersed and zero-inflated data (such as adjustment methods and zero-inflated models), this book covers the topic in a comprehensive and interesting manner. - Includes reading on several levels, including methodology and applications - Presents the state-of-the-art on the most recent zero-inflated regression models - Contains a single dataset that is used as a common thread for illustrating all methodologies - Includes R code that allows the reader to apply methodologies
Modeling Count Data
Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1107028337
Category : Business & Economics
Languages : en
Pages : 301
Book Description
This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.
Publisher: Cambridge University Press
ISBN: 1107028337
Category : Business & Economics
Languages : en
Pages : 301
Book Description
This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.
Overdispersion
Author: John Hinde
Publisher: Chapman & Hall
ISBN: 9781584882893
Category : Mathematics
Languages : en
Pages : 192
Book Description
Overdispersion is commonly encountered in modelling data. Statisticians and those working in the application areas need to know how to deal with it, and this book provides a complete source for identifying and handling overdispersion. With increasing focus on modelling in the applied sciences, this book is a welcome addition to the modelling literature for researchers and practitioners working in biometrics, medicine, and epidemiology. It is also excellent supplementary reading for a graduate or graduate-level course in statistical modelling.
Publisher: Chapman & Hall
ISBN: 9781584882893
Category : Mathematics
Languages : en
Pages : 192
Book Description
Overdispersion is commonly encountered in modelling data. Statisticians and those working in the application areas need to know how to deal with it, and this book provides a complete source for identifying and handling overdispersion. With increasing focus on modelling in the applied sciences, this book is a welcome addition to the modelling literature for researchers and practitioners working in biometrics, medicine, and epidemiology. It is also excellent supplementary reading for a graduate or graduate-level course in statistical modelling.
Count Data Models
Author: Rainer Winkelmann
Publisher: Springer Science & Business Media
ISBN: 366221735X
Category : Business & Economics
Languages : en
Pages : 223
Book Description
This book presents statistical methods for the analysis of events. The primary focus is on single equation cross section models. The book addresses both the methodology and the practice of the subject and it provides both a synthesis of a diverse body of literature that hitherto was available largely in pieces, as well as a contribution to the progress of the methodology, establishing several new results and introducing new models. Starting from the standard Poisson regression model as a benchmark, the causes, symptoms and consequences of misspecification are worked out. Both parametric and semi-parametric alternatives are discussed. While semi-parametric models allow for robust interference, parametric models can identify features of the underlying data generation process.
Publisher: Springer Science & Business Media
ISBN: 366221735X
Category : Business & Economics
Languages : en
Pages : 223
Book Description
This book presents statistical methods for the analysis of events. The primary focus is on single equation cross section models. The book addresses both the methodology and the practice of the subject and it provides both a synthesis of a diverse body of literature that hitherto was available largely in pieces, as well as a contribution to the progress of the methodology, establishing several new results and introducing new models. Starting from the standard Poisson regression model as a benchmark, the causes, symptoms and consequences of misspecification are worked out. Both parametric and semi-parametric alternatives are discussed. While semi-parametric models allow for robust interference, parametric models can identify features of the underlying data generation process.
Model Based Inference in the Life Sciences
Author: David R. Anderson
Publisher: Springer Science & Business Media
ISBN: 0387740759
Category : Science
Languages : en
Pages : 203
Book Description
This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.
Publisher: Springer Science & Business Media
ISBN: 0387740759
Category : Science
Languages : en
Pages : 203
Book Description
This textbook introduces a science philosophy called "information theoretic" based on Kullback-Leibler information theory. It focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The text is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals. Readers are however expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.
Statistical Methods for Rates and Proportions
Author: Joseph L. Fleiss
Publisher: John Wiley & Sons
ISBN: 1118625617
Category : Medical
Languages : en
Pages : 585
Book Description
Das für Fachleute und fortgeschrittene Studenten konzipierte Buch beschäftigt sich mit dem Entwurf und der Analyse von Untersuchungen, Studien und Experimenten, bei denen qualitative und kategorische Daten anfallen. - jetzt in dritter Auflage - neue Informationen unter anderem zur logistischen Regression, zur Binomialverteilung, zu Daten von (zufälligen) Stichproben und zu den Delta-Methoden für Multinomialfrequenzen - Buch ist auf seinem Gebiet führend, das bewährte Material der Vorgängerauflagen wurde übernommen
Publisher: John Wiley & Sons
ISBN: 1118625617
Category : Medical
Languages : en
Pages : 585
Book Description
Das für Fachleute und fortgeschrittene Studenten konzipierte Buch beschäftigt sich mit dem Entwurf und der Analyse von Untersuchungen, Studien und Experimenten, bei denen qualitative und kategorische Daten anfallen. - jetzt in dritter Auflage - neue Informationen unter anderem zur logistischen Regression, zur Binomialverteilung, zu Daten von (zufälligen) Stichproben und zu den Delta-Methoden für Multinomialfrequenzen - Buch ist auf seinem Gebiet führend, das bewährte Material der Vorgängerauflagen wurde übernommen
Modern Methods for Robust Regression
Author: Robert Andersen
Publisher: SAGE
ISBN: 1412940729
Category : Mathematics
Languages : en
Pages : 129
Book Description
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Publisher: SAGE
ISBN: 1412940729
Category : Mathematics
Languages : en
Pages : 129
Book Description
Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Bioinformatic and Statistical Analysis of Microbiome Data
Author: Yinglin Xia
Publisher: Springer Nature
ISBN: 3031213912
Category : Science
Languages : en
Pages : 717
Book Description
This unique book addresses the bioinformatic and statistical modelling and also the analysis of microbiome data using cutting-edge QIIME 2 and R software. It covers core analysis topics in both bioinformatics and statistics, which provides a complete workflow for microbiome data analysis: from raw sequencing reads to community analysis and statistical hypothesis testing. It includes real-world data from the authors’ research and from the public domain, and discusses the implementation of QIIME 2 and R for data analysis step-by-step. The data as well as QIIME 2 and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter so that these new methods can be readily applied in their own research. Bioinformatic and Statistical Analysis of Microbiome Data is an ideal book for advanced graduate students and researchers in the clinical, biomedical, agricultural, and environmental fields, as well as those studying bioinformatics, statistics, and big data analysis.
Publisher: Springer Nature
ISBN: 3031213912
Category : Science
Languages : en
Pages : 717
Book Description
This unique book addresses the bioinformatic and statistical modelling and also the analysis of microbiome data using cutting-edge QIIME 2 and R software. It covers core analysis topics in both bioinformatics and statistics, which provides a complete workflow for microbiome data analysis: from raw sequencing reads to community analysis and statistical hypothesis testing. It includes real-world data from the authors’ research and from the public domain, and discusses the implementation of QIIME 2 and R for data analysis step-by-step. The data as well as QIIME 2 and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter so that these new methods can be readily applied in their own research. Bioinformatic and Statistical Analysis of Microbiome Data is an ideal book for advanced graduate students and researchers in the clinical, biomedical, agricultural, and environmental fields, as well as those studying bioinformatics, statistics, and big data analysis.
Beyond Multiple Linear Regression
Author: Paul Roback
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Handbook of Statistical Methods for Randomized Controlled Trials
Author: KyungMann Kim
Publisher: CRC Press
ISBN: 1498714641
Category : Mathematics
Languages : en
Pages : 655
Book Description
Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials. Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.
Publisher: CRC Press
ISBN: 1498714641
Category : Mathematics
Languages : en
Pages : 655
Book Description
Statistical concepts provide scientific framework in experimental studies, including randomized controlled trials. In order to design, monitor, analyze and draw conclusions scientifically from such clinical trials, clinical investigators and statisticians should have a firm grasp of the requisite statistical concepts. The Handbook of Statistical Methods for Randomized Controlled Trials presents these statistical concepts in a logical sequence from beginning to end and can be used as a textbook in a course or as a reference on statistical methods for randomized controlled trials. Part I provides a brief historical background on modern randomized controlled trials and introduces statistical concepts central to planning, monitoring and analysis of randomized controlled trials. Part II describes statistical methods for analysis of different types of outcomes and the associated statistical distributions used in testing the statistical hypotheses regarding the clinical questions. Part III describes some of the most used experimental designs for randomized controlled trials including the sample size estimation necessary in planning. Part IV describe statistical methods used in interim analysis for monitoring of efficacy and safety data. Part V describe important issues in statistical analyses such as multiple testing, subgroup analysis, competing risks and joint models for longitudinal markers and clinical outcomes. Part VI addresses selected miscellaneous topics in design and analysis including multiple assignment randomization trials, analysis of safety outcomes, non-inferiority trials, incorporating historical data, and validation of surrogate outcomes.