Statistical Methods for Hospital Monitoring with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistical Methods for Hospital Monitoring with R PDF full book. Access full book title Statistical Methods for Hospital Monitoring with R by Anthony Morton. Download full books in PDF and EPUB format.

Statistical Methods for Hospital Monitoring with R

Statistical Methods for Hospital Monitoring with R PDF Author: Anthony Morton
Publisher: John Wiley & Sons
ISBN: 1118639170
Category : Medical
Languages : en
Pages : 462

Book Description
Hospitals monitoring is becoming more complex and is increasing both because staff want their data analysed and because of increasing mandated surveillance. This book provides a suite of functions in R, enabling scientists and data analysts working in infection management and quality improvement departments in hospitals, to analyse their often non-independent data which is frequently in the form of trended, over-dispersed and sometimes auto-correlated time series; this is often difficult to analyse using standard office software. This book provides much-needed guidance on data analysis using R for the growing number of scientists in hospital departments who are responsible for producing reports, and who may have limited statistical expertise. This book explores data analysis using R and is aimed at scientists in hospital departments who are responsible for producing reports, and who are involved in improving safety. Professionals working in the healthcare quality and safety community will also find this book of interest Statistical Methods for Hospital Monitoring with R: Provides functions to perform quality improvement and infection management data analysis. Explores the characteristics of complex systems, such as self-organisation and emergent behaviour, along with their implications for such activities as root-cause analysis and the Pareto principle that seek few key causes of adverse events. Provides a summary of key non-statistical aspects of hospital safety and easy to use functions. Provides R scripts in an accompanying web site enabling analyses to be performed by the reader http://www.wiley.com/go/hospital_monitoring Covers issues that will be of increasing importance in the future, such as, generalised additive models, and complex systems, networks and power laws.

Statistical Methods for Hospital Monitoring with R

Statistical Methods for Hospital Monitoring with R PDF Author: Anthony Morton
Publisher: John Wiley & Sons
ISBN: 1118639170
Category : Medical
Languages : en
Pages : 462

Book Description
Hospitals monitoring is becoming more complex and is increasing both because staff want their data analysed and because of increasing mandated surveillance. This book provides a suite of functions in R, enabling scientists and data analysts working in infection management and quality improvement departments in hospitals, to analyse their often non-independent data which is frequently in the form of trended, over-dispersed and sometimes auto-correlated time series; this is often difficult to analyse using standard office software. This book provides much-needed guidance on data analysis using R for the growing number of scientists in hospital departments who are responsible for producing reports, and who may have limited statistical expertise. This book explores data analysis using R and is aimed at scientists in hospital departments who are responsible for producing reports, and who are involved in improving safety. Professionals working in the healthcare quality and safety community will also find this book of interest Statistical Methods for Hospital Monitoring with R: Provides functions to perform quality improvement and infection management data analysis. Explores the characteristics of complex systems, such as self-organisation and emergent behaviour, along with their implications for such activities as root-cause analysis and the Pareto principle that seek few key causes of adverse events. Provides a summary of key non-statistical aspects of hospital safety and easy to use functions. Provides R scripts in an accompanying web site enabling analyses to be performed by the reader http://www.wiley.com/go/hospital_monitoring Covers issues that will be of increasing importance in the future, such as, generalised additive models, and complex systems, networks and power laws.

Statistical Methods in Healthcare

Statistical Methods in Healthcare PDF Author: Frederick W. Faltin
Publisher: John Wiley & Sons
ISBN: 1119942047
Category : Medical
Languages : en
Pages : 533

Book Description
Statistical Methods in Healthcare In recent years the number of innovative medicinal products and devices submitted and approved by regulatory bodies has declined dramatically. The medical product development process is no longer able to keep pace with increasing technologies, science and innovations and the goal is to develop new scientific and technical tools and to make product development processes more efficient and effective. Statistical Methods in Healthcare focuses on the application of statistical methodologies to evaluate promising alternatives and to optimize the performance and demonstrate the effectiveness of those that warrant pursuit is critical to success. Statistical methods used in planning, delivering and monitoring health care, as well as selected statistical aspects of the development and/or production of pharmaceuticals and medical devices are also addressed. With a focus on finding solutions to these challenges, this book: Provides a comprehensive, in-depth treatment of statistical methods in healthcare, along with a reference source for practitioners and specialists in health care and drug development. Offers a broad coverage of standards and established methods through leading edge techniques. Uses an integrated case study based approach, with focus on applications. Looks at the use of analytical and monitoring schemes to evaluate therapeutic performance. Features the application of modern quality management systems to clinical practice, and to pharmaceutical development and production processes. Addresses the use of modern statistical methods such as Adaptive Design, Seamless Design, Data Mining, Bayesian networks and Bootstrapping that can be applied to support the challenging new vision. Practitioners in healthcare-related professions, ranging from clinical trials to care delivery to medical device design, as well as statistical researchers in the field, will benefit from this book.

Registries for Evaluating Patient Outcomes

Registries for Evaluating Patient Outcomes PDF Author: Agency for Healthcare Research and Quality/AHRQ
Publisher: Government Printing Office
ISBN: 1587634333
Category : Medical
Languages : en
Pages : 385

Book Description
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.

Statistical Methods for Healthcare Performance Monitoring

Statistical Methods for Healthcare Performance Monitoring PDF Author: Alex Bottle
Publisher: CRC Press
ISBN: 1315355469
Category : Mathematics
Languages : en
Pages : 184

Book Description
Healthcare is important to everyone, yet large variations in its quality have been well documented both between and within many countries. With demand and expenditure rising, it’s more crucial than ever to know how well the healthcare system and all its components – from staff member to regional network – are performing. This requires data, which inevitably differ in form and quality. It also requires statistical methods, the output of which needs to be presented so that it can be understood by whoever needs it to make decisions. Statistical Methods for Healthcare Performance Monitoring covers measuring quality, types of data, risk adjustment, defining good and bad performance, statistical monitoring, presenting the results to different audiences and evaluating the monitoring system itself. Using examples from around the world, it brings all the issues and perspectives together in a largely non-technical way for clinicians, managers and methodologists. Statistical Methods for Healthcare Performance Monitoring is aimed at statisticians and researchers who need to know how to measure and compare performance, health service regulators, health service managers with responsibilities for monitoring performance, and quality improvement scientists, including those involved in clinical audits.

Modeling and Analysis of Compositional Data

Modeling and Analysis of Compositional Data PDF Author: Vera Pawlowsky-Glahn
Publisher: John Wiley & Sons
ISBN: 111900313X
Category : Mathematics
Languages : en
Pages : 274

Book Description
Modeling and Analysis of Compositional Data presents a practical and comprehensive introduction to the analysis of compositional data along with numerous examples to illustrate both theory and application of each method. Based upon short courses delivered by the authors, it provides a complete and current compendium of fundamental to advanced methodologies along with exercises at the end of each chapter to improve understanding, as well as data and a solutions manual which is available on an accompanying website. Complementing Pawlowsky-Glahn’s earlier collective text that provides an overview of the state-of-the-art in this field, Modeling and Analysis of Compositional Data fills a gap in the literature for a much-needed manual for teaching, self learning or consulting.

Introduction to Statistical Methods for Biosurveillance

Introduction to Statistical Methods for Biosurveillance PDF Author: Ronald D. Fricker
Publisher: Cambridge University Press
ISBN: 1107328063
Category : Medical
Languages : en
Pages : 417

Book Description
Bioterrorism is not a new threat, but in an increasingly interconnected world, the potential for catastrophic outcomes is greater today than ever. The medical and public health communities are establishing biosurveillance systems designed to proactively monitor populations for possible disease outbreaks as a first line of defense. The ideal biosurveillance system should identify trends not visible to individual physicians and clinicians in near-real time. Many of these systems use statistical algorithms to look for anomalies and to trigger epidemiologic investigation, quantification, localization and outbreak management. This book discusses the design and evaluation of statistical methods for effective biosurveillance for readers with minimal statistical training. Weaving public health and statistics together, it presents basic and more advanced methods, with a focus on empirically demonstrating added value. Although the emphasis is on epidemiologic and syndromic surveillance, the statistical methods can be applied to a broad class of public health surveillance problems.

Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science

Advanced Statistical Methods in Process Monitoring, Finance, and Environmental Science PDF Author: Sven Knoth
Publisher: Springer Nature
ISBN: 3031691113
Category :
Languages : en
Pages : 503

Book Description


Statistical Methods for Evaluating Safety in Medical Product Development

Statistical Methods for Evaluating Safety in Medical Product Development PDF Author: A. Lawrence Gould
Publisher: John Wiley & Sons
ISBN: 1118763106
Category : Medical
Languages : en
Pages : 390

Book Description
This book gives professionals in clinical research valuable information on the challenging issues of the design, execution, and management of clinical trials, and how to resolve these issues effectively. It also provides understanding and practical guidance on the application of contemporary statistical methods to contemporary issues in safety evaluation during medical product development. Each chapter provides sufficient detail to the reader to undertake the design and analysis of experiments at various stages of product development, including comprehensive references to the relevant literature. Provides a guide to statistical methods and application in medical product development Assists readers in undertaking design and analysis of experiments at various stages of product development Features case studies throughout the book, as well as, SAS and R code

Secondary Analysis of Electronic Health Records

Secondary Analysis of Electronic Health Records PDF Author: MIT Critical Data
Publisher: Springer
ISBN: 3319437429
Category : Medical
Languages : en
Pages : 435

Book Description
This book trains the next generation of scientists representing different disciplines to leverage the data generated during routine patient care. It formulates a more complete lexicon of evidence-based recommendations and support shared, ethical decision making by doctors with their patients. Diagnostic and therapeutic technologies continue to evolve rapidly, and both individual practitioners and clinical teams face increasingly complex ethical decisions. Unfortunately, the current state of medical knowledge does not provide the guidance to make the majority of clinical decisions on the basis of evidence. The present research infrastructure is inefficient and frequently produces unreliable results that cannot be replicated. Even randomized controlled trials (RCTs), the traditional gold standards of the research reliability hierarchy, are not without limitations. They can be costly, labor intensive, and slow, and can return results that are seldom generalizable to every patient population. Furthermore, many pertinent but unresolved clinical and medical systems issues do not seem to have attracted the interest of the research enterprise, which has come to focus instead on cellular and molecular investigations and single-agent (e.g., a drug or device) effects. For clinicians, the end result is a bit of a “data desert” when it comes to making decisions. The new research infrastructure proposed in this book will help the medical profession to make ethically sound and well informed decisions for their patients.

Mathematical and Statistical Methods in Food Science and Technology

Mathematical and Statistical Methods in Food Science and Technology PDF Author: Daniel Granato
Publisher: John Wiley & Sons
ISBN: 1118433688
Category : Technology & Engineering
Languages : en
Pages : 540

Book Description
Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.