Statistics for High-Dimensional Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistics for High-Dimensional Data PDF full book. Access full book title Statistics for High-Dimensional Data by Peter Bühlmann. Download full books in PDF and EPUB format.

Statistics for High-Dimensional Data

Statistics for High-Dimensional Data PDF Author: Peter Bühlmann
Publisher: Springer Science & Business Media
ISBN: 364220192X
Category : Mathematics
Languages : en
Pages : 568

Book Description
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Statistics for High-Dimensional Data

Statistics for High-Dimensional Data PDF Author: Peter Bühlmann
Publisher: Springer Science & Business Media
ISBN: 364220192X
Category : Mathematics
Languages : en
Pages : 568

Book Description
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

High-Dimensional Statistics

High-Dimensional Statistics PDF Author: Martin J. Wainwright
Publisher: Cambridge University Press
ISBN: 1108498027
Category : Business & Economics
Languages : en
Pages : 571

Book Description
A coherent introductory text from a groundbreaking researcher, focusing on clarity and motivation to build intuition and understanding.

Fundamentals of High-Dimensional Statistics

Fundamentals of High-Dimensional Statistics PDF Author: Johannes Lederer
Publisher: Springer Nature
ISBN: 3030737926
Category : Mathematics
Languages : en
Pages : 355

Book Description
This textbook provides a step-by-step introduction to the tools and principles of high-dimensional statistics. Each chapter is complemented by numerous exercises, many of them with detailed solutions, and computer labs in R that convey valuable practical insights. The book covers the theory and practice of high-dimensional linear regression, graphical models, and inference, ensuring readers have a smooth start in the field. It also offers suggestions for further reading. Given its scope, the textbook is intended for beginning graduate and advanced undergraduate students in statistics, biostatistics, and bioinformatics, though it will be equally useful to a broader audience.

Statistical Analysis for High-Dimensional Data

Statistical Analysis for High-Dimensional Data PDF Author: Arnoldo Frigessi
Publisher: Springer
ISBN: 3319270990
Category : Mathematics
Languages : en
Pages : 313

Book Description
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Statistical Inference from High Dimensional Data

Statistical Inference from High Dimensional Data PDF Author: Carlos Fernandez-Lozano
Publisher: MDPI
ISBN: 3036509445
Category : Science
Languages : en
Pages : 314

Book Description
• Real-world problems can be high-dimensional, complex, and noisy • More data does not imply more information • Different approaches deal with the so-called curse of dimensionality to reduce irrelevant information • A process with multidimensional information is not necessarily easy to interpret nor process • In some real-world applications, the number of elements of a class is clearly lower than the other. The models tend to assume that the importance of the analysis belongs to the majority class and this is not usually the truth • The analysis of complex diseases such as cancer are focused on more-than-one dimensional omic data • The increasing amount of data thanks to the reduction of cost of the high-throughput experiments opens up a new era for integrative data-driven approaches • Entropy-based approaches are of interest to reduce the dimensionality of high-dimensional data

Mathematical Foundations of Infinite-Dimensional Statistical Models

Mathematical Foundations of Infinite-Dimensional Statistical Models PDF Author: Evarist Giné
Publisher: Cambridge University Press
ISBN: 1009022784
Category : Mathematics
Languages : en
Pages : 706

Book Description
In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.

Partially Linear Models

Partially Linear Models PDF Author: Wolfgang Härdle
Publisher: Springer Science & Business Media
ISBN: 3642577008
Category : Mathematics
Languages : en
Pages : 210

Book Description
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.

High-dimensional Data Analysis

High-dimensional Data Analysis PDF Author: Tony Cai;Xiaotong Shen
Publisher:
ISBN: 9787894236326
Category :
Languages : en
Pages : 318

Book Description
Over the last few years, significant developments have been taking place in highdimensional data analysis, driven primarily by a wide range of applications in many fields such as genomics and signal processing. In particular, substantial advances have been made in the areas of feature selection, covariance estimation, classification and regression. This book intends to examine important issues arising from highdimensional data analysis to explore key ideas for statistical inference and prediction. It is structured around topics on multiple hypothesis testing, feature selection, regression, cla.

High-Dimensional Data Analysis with Low-Dimensional Models

High-Dimensional Data Analysis with Low-Dimensional Models PDF Author: John Wright
Publisher: Cambridge University Press
ISBN: 1108805558
Category : Computers
Languages : en
Pages : 718

Book Description
Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

High-Dimensional Probability

High-Dimensional Probability PDF Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299

Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.