Statistical Analysis of Microbiome Data with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Statistical Analysis of Microbiome Data with R PDF full book. Access full book title Statistical Analysis of Microbiome Data with R by Yinglin Xia. Download full books in PDF and EPUB format.

Statistical Analysis of Microbiome Data with R

Statistical Analysis of Microbiome Data with R PDF Author: Yinglin Xia
Publisher: Springer
ISBN: 9811315345
Category : Computers
Languages : en
Pages : 518

Book Description
This unique book addresses the statistical modelling and analysis of microbiome data using cutting-edge R software. It includes real-world data from the authors’ research and from the public domain, and discusses the implementation of R for data analysis step by step. The data and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, so that these new methods can be readily applied in their own research. The book also discusses recent developments in statistical modelling and data analysis in microbiome research, as well as the latest advances in next-generation sequencing and big data in methodological development and applications. This timely book will greatly benefit all readers involved in microbiome, ecology and microarray data analyses, as well as other fields of research.

Statistical Analysis of Microbiome Data with R

Statistical Analysis of Microbiome Data with R PDF Author: Yinglin Xia
Publisher: Springer
ISBN: 9811315345
Category : Computers
Languages : en
Pages : 518

Book Description
This unique book addresses the statistical modelling and analysis of microbiome data using cutting-edge R software. It includes real-world data from the authors’ research and from the public domain, and discusses the implementation of R for data analysis step by step. The data and R computer programs are publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, so that these new methods can be readily applied in their own research. The book also discusses recent developments in statistical modelling and data analysis in microbiome research, as well as the latest advances in next-generation sequencing and big data in methodological development and applications. This timely book will greatly benefit all readers involved in microbiome, ecology and microarray data analyses, as well as other fields of research.

Statistical Analysis of Microbiome Data

Statistical Analysis of Microbiome Data PDF Author: Somnath Datta
Publisher: Springer Nature
ISBN: 3030733513
Category : Medical
Languages : en
Pages : 349

Book Description
Microbiome research has focused on microorganisms that live within the human body and their effects on health. During the last few years, the quantification of microbiome composition in different environments has been facilitated by the advent of high throughput sequencing technologies. The statistical challenges include computational difficulties due to the high volume of data; normalization and quantification of metabolic abundances, relative taxa and bacterial genes; high-dimensionality; multivariate analysis; the inherently compositional nature of the data; and the proper utilization of complementary phylogenetic information. This has resulted in an explosion of statistical approaches aimed at tackling the unique opportunities and challenges presented by microbiome data. This book provides a comprehensive overview of the state of the art in statistical and informatics technologies for microbiome research. In addition to reviewing demonstrably successful cutting-edge methods, particular emphasis is placed on examples in R that rely on available statistical packages for microbiome data. With its wide-ranging approach, the book benefits not only trained statisticians in academia and industry involved in microbiome research, but also other scientists working in microbiomics and in related fields.

Microbiome Analysis

Microbiome Analysis PDF Author: Robert G. Beiko
Publisher:
ISBN: 9781493987283
Category : Microbiology
Languages : en
Pages : 324

Book Description


Introduction to Statistics in Human Performance

Introduction to Statistics in Human Performance PDF Author: Dale P. Mood
Publisher: Taylor & Francis
ISBN: 1351818821
Category : Computers
Languages : en
Pages : 406

Book Description
"Our goal is to give readers the knowledge and skill to use statistics effectively in their professional lives and feel comfortable doing so."--From the Preface This new textbook, by two renowned authors with many years of teaching experience, provides: A sound overview of statistical procedures and introduction to the basics of statistical analyses An informal perspective that enables students to read, interpret, and use statistics directly related to their chosen careers in the kinesiology field (e.g., exercise physiology, physical therapy, medicine, personal training, nurse practitioner, physician’s assistant, and more) Relevant examples, review questions, practice problems, and SPSS activities, which help to make the material understandable and interesting A student website with videos, interactive concept reviews, image bank, and PowerPoint slides offers students the tools they need to understand the statistical concepts and learn at their own pace

Multivariate Data Integration Using R

Multivariate Data Integration Using R PDF Author: Kim-Anh Lê Cao
Publisher: CRC Press
ISBN: 1000472191
Category : Computers
Languages : en
Pages : 316

Book Description
Large biological data, which are often noisy and high-dimensional, have become increasingly prevalent in biology and medicine. There is a real need for good training in statistics, from data exploration through to analysis and interpretation. This book provides an overview of statistical and dimension reduction methods for high-throughput biological data, with a specific focus on data integration. It starts with some biological background, key concepts underlying the multivariate methods, and then covers an array of methods implemented using the mixOmics package in R. Features: Provides a broad and accessible overview of methods for multi-omics data integration Covers a wide range of multivariate methods, each designed to answer specific biological questions Includes comprehensive visualisation techniques to aid in data interpretation Includes many worked examples and case studies using real data Includes reproducible R code for each multivariate method, using the mixOmics package The book is suitable for researchers from a wide range of scientific disciplines wishing to apply these methods to obtain new and deeper insights into biological mechanisms and biomedical problems. The suite of tools introduced in this book will enable students and scientists to work at the interface between, and provide critical collaborative expertise to, biologists, bioinformaticians, statisticians and clinicians.

Statistical Image Processing and Multidimensional Modeling

Statistical Image Processing and Multidimensional Modeling PDF Author: Paul Fieguth
Publisher: Springer Science & Business Media
ISBN: 1441972943
Category : Mathematics
Languages : en
Pages : 465

Book Description
Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something—an artery, a road, a DNA marker, an oil spill—from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over a two or higher dimensional space, and to which standard image-processing algorithms may not apply. There are many important data analysis methods developed in this text for such statistical image problems. Examples abound throughout remote sensing (satellite data mapping, data assimilation, climate-change studies, land use), medical imaging (organ segmentation, anomaly detection), computer vision (image classification, segmentation), and other 2D/3D problems (biological imaging, porous media). The goal, then, of this text is to address methods for solving multidimensional statistical problems. The text strikes a balance between mathematics and theory on the one hand, versus applications and algorithms on the other, by deliberately developing the basic theory (Part I), the mathematical modeling (Part II), and the algorithmic and numerical methods (Part III) of solving a given problem. The particular emphases of the book include inverse problems, multidimensional modeling, random fields, and hierarchical methods.

Metagenomics for Microbiology

Metagenomics for Microbiology PDF Author: Jacques Izard
Publisher: Academic Press
ISBN: 0124105084
Category : Science
Languages : en
Pages : 188

Book Description
Concisely discussing the application of high throughput analysis to move forward our understanding of microbial principles, Metagenomics for Microbiology provides a solid base for the design and analysis of omics studies for the characterization of microbial consortia. The intended audience includes clinical and environmental microbiologists, molecular biologists, infectious disease experts, statisticians, biostatisticians, and public health scientists. This book focuses on the technological underpinnings of metagenomic approaches and their conceptual and practical applications. With the next-generation genomic sequencing revolution increasingly permitting researchers to decipher the coding information of the microbes living with us, we now have a unique capacity to compare multiple sites within individuals and at higher resolution and greater throughput than hitherto possible. The recent articulation of this paradigm points to unique possibilities for investigation of our dynamic relationship with these cellular communities, and excitingly the probing of their therapeutic potential in disease prevention or treatment of the future. - Expertly describes the latest metagenomic methodologies and best-practices, from sample collection to data analysis for taxonomic, whole shotgun metagenomic, and metatranscriptomic studies - Includes clear-headed pointers and quick starts to direct research efforts and increase study efficacy, eschewing ponderous prose - Presented topics include sample collection and preparation, data generation and quality control, third generation sequencing, advances in computational analyses of shotgun metagenomic sequence data, taxonomic profiling of shotgun data, hypothesis testing, and mathematical and computational analysis of longitudinal data and time series. Past-examples and prospects are provided to contextualize the applications.

Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Using R and RStudio for Data Management, Statistical Analysis, and Graphics

Using R and RStudio for Data Management, Statistical Analysis, and Graphics PDF Author: Nicholas J. Horton
Publisher: CRC Press
ISBN: 1482237377
Category : Mathematics
Languages : en
Pages : 280

Book Description
This book covers the aspects of R most often used by statistical analysts. Incorporating the use of RStudio and the latest R packages, this second edition offers new chapters on simulation, special topics, and case studies. It reorganizes and enhances the chapters on data input and output, data management, statistical and mathematical functions, programming, high-level graphics plots, and the customization of plots. It also provides a detailed discussion of the philosophy and use of the knitr and markdown packages for R.

Statistical Analysis of Reliability Data

Statistical Analysis of Reliability Data PDF Author: Martin J. Crowder
Publisher: Routledge
ISBN: 1351414615
Category : Business & Economics
Languages : en
Pages : 268

Book Description
Written for those who have taken a first course in statistical methods, this book takes a modern, computer-oriented approach to describe the statistical techniques used for the assessment of reliability.