Stable Lévy Processes via Lamperti-Type Representations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stable Lévy Processes via Lamperti-Type Representations PDF full book. Access full book title Stable Lévy Processes via Lamperti-Type Representations by Andreas E. Kyprianou. Download full books in PDF and EPUB format.

Stable Lévy Processes via Lamperti-Type Representations

Stable Lévy Processes via Lamperti-Type Representations PDF Author: Andreas E. Kyprianou
Publisher: Cambridge University Press
ISBN: 1108572162
Category : Mathematics
Languages : en
Pages : 486

Book Description
Stable Lévy processes lie at the intersection of Lévy processes and self-similar Markov processes. Processes in the latter class enjoy a Lamperti-type representation as the space-time path transformation of so-called Markov additive processes (MAPs). This completely new mathematical treatment takes advantage of the fact that the underlying MAP for stable processes can be explicitly described in one dimension and semi-explicitly described in higher dimensions, and uses this approach to catalogue a large number of explicit results describing the path fluctuations of stable Lévy processes in one and higher dimensions. Written for graduate students and researchers in the field, this book systemically establishes many classical results as well as presenting many recent results appearing in the last decade, including previously unpublished material. Topics explored include first hitting laws for a variety of sets, path conditionings, law-preserving path transformations, the distribution of extremal points, growth envelopes and winding behaviour.

Stable Lévy Processes via Lamperti-Type Representations

Stable Lévy Processes via Lamperti-Type Representations PDF Author: Andreas E. Kyprianou
Publisher: Cambridge University Press
ISBN: 1108572162
Category : Mathematics
Languages : en
Pages : 486

Book Description
Stable Lévy processes lie at the intersection of Lévy processes and self-similar Markov processes. Processes in the latter class enjoy a Lamperti-type representation as the space-time path transformation of so-called Markov additive processes (MAPs). This completely new mathematical treatment takes advantage of the fact that the underlying MAP for stable processes can be explicitly described in one dimension and semi-explicitly described in higher dimensions, and uses this approach to catalogue a large number of explicit results describing the path fluctuations of stable Lévy processes in one and higher dimensions. Written for graduate students and researchers in the field, this book systemically establishes many classical results as well as presenting many recent results appearing in the last decade, including previously unpublished material. Topics explored include first hitting laws for a variety of sets, path conditionings, law-preserving path transformations, the distribution of extremal points, growth envelopes and winding behaviour.

A Lifetime of Excursions Through Random Walks and Lévy Processes

A Lifetime of Excursions Through Random Walks and Lévy Processes PDF Author: Loïc Chaumont
Publisher: Springer Nature
ISBN: 3030833097
Category : Mathematics
Languages : en
Pages : 354

Book Description
This collection honours Ron Doney’s work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney’s mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Lévy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition

Topics in Infinitely Divisible Distributions and Lévy Processes, Revised Edition PDF Author: Alfonso Rocha-Arteaga
Publisher: Springer Nature
ISBN: 3030227006
Category : Mathematics
Languages : en
Pages : 140

Book Description
This book deals with topics in the area of Lévy processes and infinitely divisible distributions such as Ornstein-Uhlenbeck type processes, selfsimilar additive processes and multivariate subordination. These topics are developed around a decreasing chain of classes of distributions Lm, m = 0,1,...,∞, from the class L0 of selfdecomposable distributions to the class L∞ generated by stable distributions through convolution and convergence. The book is divided into five chapters. Chapter 1 studies basic properties of Lm classes needed for the subsequent chapters. Chapter 2 introduces Ornstein-Uhlenbeck type processes generated by a Lévy process through stochastic integrals based on Lévy processes. Necessary and sufficient conditions are given for a generating Lévy process so that the OU type process has a limit distribution of Lm class. Chapter 3 establishes the correspondence between selfsimilar additive processes and selfdecomposable distributions and makes a close inspection of the Lamperti transformation, which transforms selfsimilar additive processes and stationary type OU processes to each other. Chapter 4 studies multivariate subordination of a cone-parameter Lévy process by a cone-valued Lévy process. Finally, Chapter 5 studies strictly stable and Lm properties inherited by the subordinated process in multivariate subordination. In this revised edition, new material is included on advances in these topics. It is rewritten as self-contained as possible. Theorems, lemmas, propositions, examples and remarks were reorganized; some were deleted and others were newly added. The historical notes at the end of each chapter were enlarged. This book is addressed to graduate students and researchers in probability and mathematical statistics who are interested in learning more on Lévy processes and infinitely divisible distributions.

Fluctuations of Lévy Processes with Applications

Fluctuations of Lévy Processes with Applications PDF Author: Andreas E. Kyprianou
Publisher: Springer Science & Business Media
ISBN: 3642376320
Category : Mathematics
Languages : en
Pages : 461

Book Description
Lévy processes are the natural continuous-time analogue of random walks and form a rich class of stochastic processes around which a robust mathematical theory exists. Their application appears in the theory of many areas of classical and modern stochastic processes including storage models, renewal processes, insurance risk models, optimal stopping problems, mathematical finance, continuous-state branching processes and positive self-similar Markov processes. This textbook is based on a series of graduate courses concerning the theory and application of Lévy processes from the perspective of their path fluctuations. Central to the presentation is the decomposition of paths in terms of excursions from the running maximum as well as an understanding of short- and long-term behaviour. The book aims to be mathematically rigorous while still providing an intuitive feel for underlying principles. The results and applications often focus on the case of Lévy processes with jumps in only one direction, for which recent theoretical advances have yielded a higher degree of mathematical tractability. The second edition additionally addresses recent developments in the potential analysis of subordinators, Wiener-Hopf theory, the theory of scale functions and their application to ruin theory, as well as including an extensive overview of the classical and modern theory of positive self-similar Markov processes. Each chapter has a comprehensive set of exercises.

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus PDF Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 1139477986
Category : Mathematics
Languages : en
Pages : 461

Book Description
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1052

Book Description


Cambridge Tracts in Mathematics

Cambridge Tracts in Mathematics PDF Author: Jean Bertoin
Publisher: Cambridge University Press
ISBN: 9780521646321
Category : Mathematics
Languages : en
Pages : 292

Book Description
This 1996 book is a comprehensive account of the theory of Lévy processes; aimed at probability theorists.

Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion

Malliavin Calculus for Lévy Processes and Infinite-Dimensional Brownian Motion PDF Author: Horst Osswald
Publisher: Cambridge University Press
ISBN: 1107016142
Category : Mathematics
Languages : en
Pages : 429

Book Description
After functional, measure and stochastic analysis prerequisites, the author covers chaos decomposition, Skorohod integral processes, Malliavin derivative and Girsanov transformations.

Combinatorial Stochastic Processes

Combinatorial Stochastic Processes PDF Author: Jim Pitman
Publisher: Springer Science & Business Media
ISBN: 354030990X
Category : Mathematics
Languages : en
Pages : 257

Book Description
The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.

A Lifetime of Excursions Through Random Walks and Lévy Processes

A Lifetime of Excursions Through Random Walks and Lévy Processes PDF Author: Loïc Chaumont
Publisher: Birkhäuser
ISBN: 9783030833114
Category : Mathematics
Languages : en
Pages : 0

Book Description
This collection honours Ron Doney’s work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doney’s mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Lévy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.