Stability of Functional Equations in Several Variables PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stability of Functional Equations in Several Variables PDF full book. Access full book title Stability of Functional Equations in Several Variables by D.H. Hyers. Download full books in PDF and EPUB format.

Stability of Functional Equations in Several Variables

Stability of Functional Equations in Several Variables PDF Author: D.H. Hyers
Publisher: Springer Science & Business Media
ISBN: 9780817640248
Category : Mathematics
Languages : en
Pages : 330

Book Description
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.

Stability of Functional Equations in Several Variables

Stability of Functional Equations in Several Variables PDF Author: D.H. Hyers
Publisher: Springer Science & Business Media
ISBN: 9780817640248
Category : Mathematics
Languages : en
Pages : 330

Book Description
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.

Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis

Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis PDF Author: Soon-Mo Jung
Publisher: Springer Science & Business Media
ISBN: 1441996370
Category : Mathematics
Languages : en
Pages : 369

Book Description
No books dealing with a comprehensive illustration of the fast developing field of nonlinear analysis had been published for the mathematicians interested in this field for more than a half century until D. H. Hyers, G. Isac and Th. M. Rassias published their book, "Stability of Functional Equations in Several Variables". This book will complement the books of Hyers, Isac and Rassias and of Czerwik (Functional Equations and Inequalities in Several Variables) by presenting mainly the results applying to the Hyers-Ulam-Rassias stability. Many mathematicians have extensively investigated the subjects on the Hyers-Ulam-Rassias stability. This book covers and offers almost all classical results on the Hyers-Ulam-Rassias stability in an integrated and self-contained fashion.

Stability of Functional Equations in Several Variables

Stability of Functional Equations in Several Variables PDF Author: D.H. Hyers
Publisher: Springer Science & Business Media
ISBN: 1461217903
Category : Mathematics
Languages : en
Pages : 323

Book Description
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.

Functional Equations on Hypergroups

Functional Equations on Hypergroups PDF Author: László Székelyhidi
Publisher: World Scientific
ISBN: 9814407003
Category : Mathematics
Languages : en
Pages : 210

Book Description
The theory of hypergroups is a rapidly developing area of mathematics due to its diverse applications in different areas like probability, harmonic analysis, etc. This book exhibits the use of functional equations and spectral synthesis in the theory of hypergroups. It also presents the fruitful consequences of this delicate "marriage" where the methods of spectral analysis and synthesis can provide an efficient tool in characterization problems of function classes on hypergroups. This book is written for the interested reader who has open eyes for both functional equations and hypergroups, and who dares to enter a new world of ideas, a new world of methods - and, sometimes, a new world of unexpected difficulties.

Functional Equations in Several Variables

Functional Equations in Several Variables PDF Author: J. Aczél
Publisher: Cambridge University Press
ISBN: 9780521352765
Category : Mathematics
Languages : en
Pages : 490

Book Description
This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.

Functional Equations And Inequalities In Several Variables

Functional Equations And Inequalities In Several Variables PDF Author: Stefan Czerwik
Publisher: World Scientific
ISBN: 9814489506
Category : Mathematics
Languages : en
Pages : 421

Book Description
This book outlines the modern theory of functional equations and inequalities in several variables. It consists of three parts. The first is devoted to additive and convex functions defined on linear spaces with semilinear topologies. In the second part, the problems of stability of functional equations in the sense of Ulam-Hyers-Rassias and in some function spaces are considered. In the last part, the functional equations in set-valued functions are dealt with — for the first time in the mathematical literature. The book contains many fresh results concerning those problems.

An Introduction to the Theory of Functional Equations and Inequalities

An Introduction to the Theory of Functional Equations and Inequalities PDF Author: Marek Kuczma
Publisher: Springer Science & Business Media
ISBN: 3764387491
Category : Mathematics
Languages : en
Pages : 595

Book Description
Marek Kuczma was born in 1935 in Katowice, Poland, and died there in 1991. After finishing high school in his home town, he studied at the Jagiellonian University in Kraków. He defended his doctoral dissertation under the supervision of Stanislaw Golab. In the year of his habilitation, in 1963, he obtained a position at the Katowice branch of the Jagiellonian University (now University of Silesia, Katowice), and worked there till his death. Besides his several administrative positions and his outstanding teaching activity, he accomplished excellent and rich scientific work publishing three monographs and 180 scientific papers. He is considered to be the founder of the celebrated Polish school of functional equations and inequalities. "The second half of the title of this book describes its contents adequately. Probably even the most devoted specialist would not have thought that about 300 pages can be written just about the Cauchy equation (and on some closely related equations and inequalities). And the book is by no means chatty, and does not even claim completeness. Part I lists the required preliminary knowledge in set and measure theory, topology and algebra. Part II gives details on solutions of the Cauchy equation and of the Jensen inequality [...], in particular on continuous convex functions, Hamel bases, on inequalities following from the Jensen inequality [...]. Part III deals with related equations and inequalities (in particular, Pexider, Hosszú, and conditional equations, derivations, convex functions of higher order, subadditive functions and stability theorems). It concludes with an excursion into the field of extensions of homomorphisms in general." (Janos Aczel, Mathematical Reviews) "This book is a real holiday for all the mathematicians independently of their strict speciality. One can imagine what deliciousness represents this book for functional equationists." (B. Crstici, Zentralblatt für Mathematik)

Introduction to Functional Equations

Introduction to Functional Equations PDF Author: Prasanna K. Sahoo
Publisher: CRC Press
ISBN: 1439841160
Category : Mathematics
Languages : en
Pages : 459

Book Description
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p

Ulam Type Stability

Ulam Type Stability PDF Author: Janusz Brzdęk
Publisher: Springer Nature
ISBN: 3030289729
Category : Mathematics
Languages : en
Pages : 515

Book Description
This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff–James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.

Handbook of Functional Equations

Handbook of Functional Equations PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 1493912461
Category : Mathematics
Languages : en
Pages : 555

Book Description
As Richard Bellman has so elegantly stated at the Second International Conference on General Inequalities (Oberwolfach, 1978), “There are three reasons for the study of inequalities: practical, theoretical, and aesthetic.” On the aesthetic aspects, he said, “As has been pointed out, beauty is in the eye of the beholder. However, it is generally agreed that certain pieces of music, art, or mathematics are beautiful. There is an elegance to inequalities that makes them very attractive.” The content of the Handbook focuses mainly on both old and recent developments on approximate homomorphisms, on a relation between the Hardy–Hilbert and the Gabriel inequality, generalized Hardy–Hilbert type inequalities on multiple weighted Orlicz spaces, half-discrete Hilbert-type inequalities, on affine mappings, on contractive operators, on multiplicative Ostrowski and trapezoid inequalities, Ostrowski type inequalities for the Riemann–Stieltjes integral, means and related functional inequalities, Weighted Gini means, controlled additive relations, Szasz–Mirakyan operators, extremal problems in polynomials and entire functions, applications of functional equations to Dirichlet problem for doubly connected domains, nonlinear elliptic problems depending on parameters, on strongly convex functions, as well as applications to some new algorithms for solving general equilibrium problems, inequalities for the Fisher’s information measures, financial networks, mathematical models of mechanical fields in media with inclusions and holes.