Splitting Methods for Second-order Initial Value Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Splitting Methods for Second-order Initial Value Problems PDF full book. Access full book title Splitting Methods for Second-order Initial Value Problems by Pieter Jacobus Houwen. Download full books in PDF and EPUB format.

Splitting Methods for Second-order Initial Value Problems

Splitting Methods for Second-order Initial Value Problems PDF Author: Pieter Jacobus Houwen
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 18

Book Description
Abstract: "We consider stiff initial-value problems for second-order differential equations of the special form y"=f(y). Stiff initial-value problem solvers are necessarily implicit, hence, we are faced with the problem of solving systems of implicit relations. This paper focuses on the construction and analysis of iterative solution methods which are effective in cases where the Jacobian of the righthand side of the differential equation can be split into a sum of matrices with a simple structure. These iterative methods consist of the modified Newton method and an iterative linear solver to deal with the linear Newton systems. The linear solver is based on the approximate factorization of the system matrix associated with the linear Newton systems. A number of convergence results are derived for the linear solver in the case where the Jacobian matrix can be split into commuting matrices. Such often [sic] problems arise in the spatial discretization of time-dependent partial differential equations. Furthermore, the stability matrix and the order of accuracy of the integration process are derived in the case of a finite number of iterations."

Splitting Methods for Second-order Initial Value Problems

Splitting Methods for Second-order Initial Value Problems PDF Author: Pieter Jacobus Houwen
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 18

Book Description
Abstract: "We consider stiff initial-value problems for second-order differential equations of the special form y"=f(y). Stiff initial-value problem solvers are necessarily implicit, hence, we are faced with the problem of solving systems of implicit relations. This paper focuses on the construction and analysis of iterative solution methods which are effective in cases where the Jacobian of the righthand side of the differential equation can be split into a sum of matrices with a simple structure. These iterative methods consist of the modified Newton method and an iterative linear solver to deal with the linear Newton systems. The linear solver is based on the approximate factorization of the system matrix associated with the linear Newton systems. A number of convergence results are derived for the linear solver in the case where the Jacobian matrix can be split into commuting matrices. Such often [sic] problems arise in the spatial discretization of time-dependent partial differential equations. Furthermore, the stability matrix and the order of accuracy of the integration process are derived in the case of a finite number of iterations."

Iterative Splitting Methods for Differential Equations

Iterative Splitting Methods for Differential Equations PDF Author: Juergen Geiser
Publisher: CRC Press
ISBN: 1439869839
Category : Mathematics
Languages : en
Pages : 325

Book Description
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations.In th

Splitting Methods in Communication, Imaging, Science, and Engineering

Splitting Methods in Communication, Imaging, Science, and Engineering PDF Author: Roland Glowinski
Publisher: Springer
ISBN: 3319415891
Category : Mathematics
Languages : en
Pages : 822

Book Description
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.

Splitting Methods for Partial Differential Equations with Rough Solutions

Splitting Methods for Partial Differential Equations with Rough Solutions PDF Author: Helge Holden
Publisher: European Mathematical Society
ISBN: 9783037190784
Category : Mathematics
Languages : en
Pages : 238

Book Description
Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Richardson Extrapolation

Richardson Extrapolation PDF Author: Zahari Zlatev
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110533006
Category : Mathematics
Languages : en
Pages : 310

Book Description
Scientists and engineers are mainly using Richardson extrapolation as a computational tool for increasing the accuracy of various numerical algorithms for the treatment of systems of ordinary and partial differential equations and for improving the computational efficiency of the solution process by the automatic variation of the time-stepsizes. A third issue, the stability of the computations, is very often the most important one and, therefore, it is the major topic studied in all chapters of this book. Clear explanations and many examples make this text an easy-to-follow handbook for applied mathematicians, physicists and engineers working with scientific models based on differential equations. Contents The basic properties of Richardson extrapolation Richardson extrapolation for explicit Runge-Kutta methods Linear multistep and predictor-corrector methods Richardson extrapolation for some implicit methods Richardson extrapolation for splitting techniques Richardson extrapolation for advection problems Richardson extrapolation for some other problems General conclusions

Finite Difference Computing with PDEs

Finite Difference Computing with PDEs PDF Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3319554565
Category : Computers
Languages : en
Pages : 522

Book Description
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Handbook of Numerical Analysis

Handbook of Numerical Analysis PDF Author: Philippe G. Ciarlet
Publisher: Gulf Professional Publishing
ISBN: 9780444512475
Category : Mathematics
Languages : en
Pages : 502

Book Description


Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Multistep Splitting Methods of High Order for Initial Value Problems

Multistep Splitting Methods of High Order for Initial Value Problems PDF Author: P. J. van der Houwen
Publisher:
ISBN:
Category :
Languages : en
Pages : 27

Book Description


The Method of Fractional Steps

The Method of Fractional Steps PDF Author: Nikolaj N. Yanenko
Publisher: Springer Science & Business Media
ISBN: 3642651089
Category : Mathematics
Languages : en
Pages : 169

Book Description
The method of. fractional steps, known familiarly as the method oi splitting, is a remarkable technique, developed by N. N. Yanenko and his collaborators, for solving problems in theoretical mechanics numerically. It is applicable especially to potential problems, problems of elasticity and problems of fluid dynamics. Most of the applications at the present time have been to incompressible flow with free bound aries and to viscous flow at low speeds. The method offers a powerful means of solving the Navier-Stokes equations and the results produced so far cover a range of Reynolds numbers far greater than that attained in earlier methods. Further development of the method should lead to complete numerical solutions of many of the boundary layer and wake problems which at present defy satisfactory treatment. As noted by the author very few applications of the method have yet been made to problems in solid mechanics and prospects for answers both in this field and other areas such as heat transfer are encouraging. As the method is perfected it is likely to supplant traditional relaxation methods and finite element methods, especially with the increase in capability of large scale computers. The literal translation was carried out by T. Cheron with financial support of the Northrop Corporation. The editing of the translation was undertaken in collaboration with N. N. Yanenko and it is a plea sure to acknowledge his patient help and advice in this project. The edited manuscript was typed, for the most part, by Mrs.