Splines and Variational Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Splines and Variational Methods PDF full book. Access full book title Splines and Variational Methods by P. M. Prenter. Download full books in PDF and EPUB format.

Splines and Variational Methods

Splines and Variational Methods PDF Author: P. M. Prenter
Publisher: Courier Corporation
ISBN: 0486783499
Category : Mathematics
Languages : en
Pages : 338

Book Description
One of the clearest available introductions to variational methods, this text requires only a minimal background in calculus and linear algebra. Its self-contained treatment explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. The text’s first half concerns approximation theoretic notions, exploring the theory and computation of one- and two-dimensional polynomial and other spline functions. Later chapters examine variational methods in the solution of operator equations, focusing on boundary value problems in one and two dimensions. Additional topics include least squares and other Galerkin methods. Many helpful definitions, examples, and exercises appear throughout the book. A classic reference in spline theory, this volume will benefit experts as well as students of engineering and mathematics.

Splines and Variational Methods

Splines and Variational Methods PDF Author: P. M. Prenter
Publisher: Courier Corporation
ISBN: 0486469026
Category : Mathematics
Languages : en
Pages : 338

Book Description
One of the clearest available introductions to variational methods, this text requires only a minimal background in linear algebra and analysis. It explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. Many helpful definitions, examples, and exercises appear throughout the book. 1975 edition.

Splines and Variational Methods

Splines and Variational Methods PDF Author: P. M. Prenter
Publisher: Courier Corporation
ISBN: 0486783499
Category : Mathematics
Languages : en
Pages : 338

Book Description
One of the clearest available introductions to variational methods, this text requires only a minimal background in calculus and linear algebra. Its self-contained treatment explains the application of theoretic notions to the kinds of physical problems that engineers regularly encounter. The text’s first half concerns approximation theoretic notions, exploring the theory and computation of one- and two-dimensional polynomial and other spline functions. Later chapters examine variational methods in the solution of operator equations, focusing on boundary value problems in one and two dimensions. Additional topics include least squares and other Galerkin methods. Many helpful definitions, examples, and exercises appear throughout the book. A classic reference in spline theory, this volume will benefit experts as well as students of engineering and mathematics.

Spline Models for Observational Data

Spline Models for Observational Data PDF Author: Grace Wahba
Publisher: SIAM
ISBN: 0898712440
Category : Mathematics
Languages : en
Pages : 174

Book Description
This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a number of problems within this framework. Methods for including side conditions and other prior information in solving ill posed inverse problems are provided. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals.

Finite Element Methods with B-splines

Finite Element Methods with B-splines PDF Author: Klaus Hollig
Publisher: SIAM
ISBN: 9780898717532
Category : Mathematics
Languages : en
Pages : 155

Book Description
Finite Element Methods with B-Splines describes new weighted approximation techniques, combining the computational advantages of B-splines and standard finite elements. In particular, no grid generation is necessary, which eliminates a difficult and often time-consuming preprocessing step. The meshless methods are very efficient and yield highly accurate solutions with relatively few parameters. This is illustrated for typical boundary value problems in fluid flow, heat conduction, and elasticity. Topics discussed by the author include basic finite element theory, algorithms for B-splines, weighted bases, stability and error estimates, multigrid techniques, applications, and numerical examples.

Multidimensional Minimizing Splines

Multidimensional Minimizing Splines PDF Author: R. Arcangéli
Publisher: Springer Science & Business Media
ISBN: 1402077866
Category : Mathematics
Languages : en
Pages : 267

Book Description
This book is of interest to mathematicians, geologists, engineers and, in general, researchers and post graduate students involved in spline function theory, surface fitting problems or variational methods. From reviews: The book is well organized, and the English is very good. I recommend the book to researchers in approximation theory, and to anyone interested in bivariate data fitting." (L.L. Schumaker, Mathematical Reviews, 2005).

Spline Functions: Basic Theory

Spline Functions: Basic Theory PDF Author: Larry Schumaker
Publisher: Cambridge University Press
ISBN: 1139463438
Category : Mathematics
Languages : en
Pages : 524

Book Description
This classic work continues to offer a comprehensive treatment of the theory of univariate and tensor-product splines. It will be of interest to researchers and students working in applied analysis, numerical analysis, computer science, and engineering. The material covered provides the reader with the necessary tools for understanding the many applications of splines in such diverse areas as approximation theory, computer-aided geometric design, curve and surface design and fitting, image processing, numerical solution of differential equations, and increasingly in business and the biosciences. This new edition includes a supplement outlining some of the major advances in the theory since 1981, and some 250 new references. It can be used as the main or supplementary text for courses in splines, approximation theory or numerical analysis.

Approximation Theory and Methods

Approximation Theory and Methods PDF Author: M. J. D. Powell
Publisher: Cambridge University Press
ISBN: 9780521295147
Category : Mathematics
Languages : en
Pages : 356

Book Description
Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.

Handbook of Splines

Handbook of Splines PDF Author: Gheorghe Micula
Publisher: Springer Science & Business Media
ISBN: 9401153388
Category : Mathematics
Languages : en
Pages : 622

Book Description
The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.

Variational Methods with Applications in Science and Engineering

Variational Methods with Applications in Science and Engineering PDF Author: Kevin W. Cassel
Publisher: Cambridge University Press
ISBN: 1107022584
Category : Mathematics
Languages : en
Pages : 433

Book Description
This book reflects the strong connection between calculus of variations and the applications for which variational methods form the foundation.

Spline Functions

Spline Functions PDF Author: Larry L. Schumaker
Publisher: SIAM
ISBN: 1611973902
Category : Science
Languages : en
Pages : 420

Book Description
This book describes in detail the key algorithms needed for computing with spline functions and illustrates their use in solving several basic problems in numerical analysis, including function approximation, numerical quadrature, data fitting, and the numerical solution of PDE's. The focus is on computational methods for bivariate splines on triangulations in the plane and on the sphere, although both univariate and tensor-product splines are also discussed. The book contains numerous examples and figures to illustrate the methods and their performance. All of the algorithms in the book have been coded in a separate MATLAB package available for license. The package can be used to run all of the examples in the book and also provides readers with the essential tools needed to create software for their own applications. In addition to the included bibliography, a list of over 100 pages of additional references can be found on the book's website.