Spin-polarized Transport in Magnetic Nanostructures

Spin-polarized Transport in Magnetic Nanostructures PDF Author: Brian Curtin O'Gorman
Publisher:
ISBN:
Category :
Languages : en
Pages : 208

Book Description
Two of the principal phenomena observed and exploited in the field of spintronics are giant magnetoresistance (GMR) and spin transfer torque (STT). With GMR, the resistance of a magnetic multilayer is affected by the relative orientation of its magnetic layers due to (electron) spin dependent scattering. For the STT effect, a spin-polarized electric current is used to alter the magnetic state of a ferromagnet. Together, GMR and STT are at the foundation of numerous technologies, and they hold promise for many more applications. To achieve the high current densities (~1012 A/m2) that are necessary to observe STT effects, point contacts - constricted electrical pathways (~1-100 nm in diameter) between conducting materials - are often used because of their small cross-sectional areas. In this sense, we have explored STT in bilayer magnetic nanopillars, where an electric current was used to induce precession of a ferromagnetic layer. This precessional state was detected as an increase in resistance of the device, akin to GMR. Temperature dependent measurements of the onset of precession shed light on the activation mechanism, but raised further questions about its detailed theory. Point contacts can also be used as local sources or detectors of electrons. In this context, we have observed transverse electron focusing (TEF) in a single crystal of bismuth. TEF is a k-selective technique for studying electron scattering from within materials. Using lithographically fabricated point contacts, we have studied the temperature dependence of the relaxation time for ballistic electrons from 4.2 to 100 K. These measurements indicated a transition between electron-electron dominated scattering at low temperatures and electron-phonon scattering as the Debye temperature was approached. We present preliminary work toward a TEF experiment to measure spin dependent scattering from a non-magnet/magnet interface. We also investigated spin wave propagation in thin, magnetic waveguide structures. At the boundary between the waveguide and continuous magnetic film, spin wave rays were found to radiate into the film, or to reflect and form standing waves in the waveguide. A circular defect in the waveguide was observed to cause diffraction of spin waves, generating an interference pattern of higher modes of oscillation.

Spin Dependent Transport in Magnetic Nanostructures

Spin Dependent Transport in Magnetic Nanostructures PDF Author: Sadamichi Maekawa
Publisher: CRC Press
ISBN: 9781420024579
Category : Technology & Engineering
Languages : en
Pages : 296

Book Description
In magnetic systems of nano-meter size, the interplay between spin and charge of electrons provides unique transport phenomena. In magnetic superlattices, magnetic and non-magnetic metallic thin films with thickness of the order of one nano-meter are piled-up alternately. Since the discovery of giant magnetoresistance (GMR) in these superlattices in 1988, spin dependent transport phenomena in magnetic nanostructures have received much attention from both academic and technological points of view. Ferromagnetic tunnel junctions made of ferromagnetic metal electrodes and a very thin insulating barrier between them are also of current interest as magnetoresistive devices, where the tunneling current depends on the relative orientation of magnetization (TMR). In addition to magnetic superlattices and magnetic tunnel junctions, magnetic granular systems and magnetic dots have been studied extensively as magnetoresistive systems. Edited by two of the world's leading authorities, Spin Dependent Transport in Magnetic Nanostructures introduces and explains the basic physics and applications of a variety of spin-dependent transport phenomena in magnetic nanostructures with particular emphasis on magnetic multilayers and magnetic tunnel junctions.

Spin-dependent Transport Phenomena in Magnetic Nanostructures

Spin-dependent Transport Phenomena in Magnetic Nanostructures PDF Author: A. S. Sahakyan
Publisher:
ISBN: 9781536103007
Category : SCIENCE
Languages : en
Pages :

Book Description


Magnetic Nanostructures

Magnetic Nanostructures PDF Author: Hartmut Zabel
Publisher: Springer
ISBN: 3642320422
Category : Science
Languages : en
Pages : 279

Book Description
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.

Spin Electronics

Spin Electronics PDF Author: David D. Awschalom
Publisher: Springer Science & Business Media
ISBN: 9401705321
Category : Science
Languages : en
Pages : 216

Book Description
The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.

Magnetic Nanostructures in Modern Technology

Magnetic Nanostructures in Modern Technology PDF Author: Bruno Azzerboni
Publisher: Springer
ISBN: 1402063385
Category : Technology & Engineering
Languages : en
Pages : 356

Book Description
In this book, a team of outstanding scientists in the field of modern magnetic nanotechnologies illustrates the state-of-the-art in several areas of advanced magneto-electronic devices, magnetic micro-electromechanical systems and high density information storage technologies. Providing a unique source of information for the young physicist, chemist or engineer, the book also serves as a crucial reference for the expert scientist and the teacher of advanced university courses.

Spin-polarized Transport in Superconducting and Ferromagnetic Nanostructures

Spin-polarized Transport in Superconducting and Ferromagnetic Nanostructures PDF Author: Fabio Taddei
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism PDF Author: Evgeny Y. Tsymbal
Publisher: CRC Press
ISBN: 1439803773
Category : Science
Languages : en
Pages : 809

Book Description
In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grünberg’s Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, balanced account of the state of the art in the field known as spin electronics or spintronics. It reveals how key phenomena first discovered in one class of materials, such as spin injection in metals, have been revisited decades later in other materials systems, including silicon, organic semiconductors, carbon nanotubes, graphene, and carefully engineered nanostructures. The first section of the book offers a historical and personal perspective of the field written by Nobel Prize laureate Albert Fert. The second section addresses physical phenomena, such as GMR, in hybrid structures of ferromagnetic and normal metals. The third section discusses recent developments in spin-dependent tunneling, including magnetic tunnel junctions with ferroelectric barriers. In the fourth section, the contributors look at how to control spin and magnetism in semiconductors. In the fifth section, they examine phenomena typically found in nanostructures made from metals, superconductors, molecular magnets, carbon nanotubes, quantum dots, and graphene. The final section covers novel spin-based applications, including advanced magnetic sensors, nonvolatile magnetoresistive random access memory, and semiconductor spin-lasers. The techniques and materials of spintronics have rapidly evolved in recent years, leading to vast improvements in hard drive storage and magnetic sensing. With extensive cross-references between chapters, this seminal handbook provides a complete guide to spin transport and magnetism across various classes of materials and structures.

Spin-polarized Transport and Spin Filtering in Organic Nanostructures

Spin-polarized Transport and Spin Filtering in Organic Nanostructures PDF Author: Kazi Monirul Alam Alam
Publisher:
ISBN:
Category : Magnetism
Languages : en
Pages : 107

Book Description
Electrons, the fundamental charge carriers in solid-state devices, possess three intrinsic properties: mass, charge and spin. Spin is a quantum mechanical property, but can be loosely visualized as a tiny "intrinsic" magnetic dipole moment attached to an electron. In conventional electron devices, spin magnetic moments point along random directions in space and play no significant role in device operation. In the emerging field of "spintronics" the central theme is to harness the spin degree of freedom of charge carriers to realize novel data storage and information processing technologies. Spintronic devices are already ubiquitous in state-of-the-art hard disks with large storage densities. A concerted global effort is underway to explore various spin-based information processing concepts, which can potentially be more energy-efficient than traditional charge-based electronics. In recent years, substantial research has been devoted to understanding carrier spin dynamics in metallic multilayers, tunnel junctions and inorganic semiconductors such as silicon, germanium and various III-V compounds. On the other hand, p-conjugated organic semiconductors that play a crucial role in organic electronics and displays are relatively new materials in the area of spintronics. Organic semiconductors offer several advantages (such as mechanical flexibility, chemical tunability of physical properties, low-cost and low-temperature processing) compared to their inorganic counterparts. The ability to control carrier spin dynamics in organic materials will open up possibility of new devices such as flexible non-volatile memories, spin-based organic light emitting diodes and spin filters. iii In this work, we have explored two key spin related phenomena in organic semiconductor nanostructures: (a) spin-polarized transport and (b) spin filtering. In the first sub-project, we explore spin transport in "nanowire" geometry instead of commonly studied thin film devices. Such experiments shed light on the spin relaxation mechanisms in organics and indicate ways to minimize such effects. Fabrication of organic nanowires with well-controlled geometry in the sub-100 nm range is a non-trivial task, and in this subproject we have developed a novel technique for this purpose. Spin transport in rubrene nanowires has been studied, which indicates significant suppression of spin relaxation in nanowire geometry compared to rubrene thin films. Our experimental data indicates that spin-orbit coupling is the dominant spin relaxation mechanism in rubrene nanowires. In the second sub-project, we explore spin filtering (transmission of one particular type of spin) through an organic nanostructure in which single wall carbon nanotubes (SWCNT) are wrapped with single stranded DNA (ssDNA) molecules. Efficient spin filtering has been observed in this system, which may enable magnetless spintronic devices in the future.

Spintronics Handbook, Second Edition: Spin Transport and Magnetism

Spintronics Handbook, Second Edition: Spin Transport and Magnetism PDF Author: Evgeny Y. Tsymbal
Publisher: CRC Press
ISBN: 042980525X
Category : Science
Languages : en
Pages : 555

Book Description
Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications. Features: Presents the most comprehensive reference text for the overlapping fields of spintronics (spin transport) and magnetism. Covers the full spectrum of materials and structures, from silicon and organic semiconductors to carbon nanotubes, graphene, and engineered nanostructures. Extends coverage of two-dimensional materials beyond graphene, including molybdenum disulfide and study of their spin relaxation mechanisms Includes new dedicated chapters on cutting-edge topics such as spin-orbit torques, topological insulators, half metals, complex oxide materials and skyrmions. Discusses important emerging areas of spintronics with superconductors, spin-wave spintronics, benchmarking of spintronics devices, and theory and experimental approaches to molecular spintronics. Evgeny Tsymbal's research is focused on computational materials science aiming at the understanding of fundamental properties of advanced ferromagnetic and ferroelectric nanostructures and materials relevant to nanoelectronics and spintronics. He is a George Holmes University Distinguished Professor at the Department of Physics and Astronomy of the University of Nebraska-Lincoln (UNL), Director of the UNL’s Materials Research Science and Engineering Center (MRSEC), and Director of the multi-institutional Center for NanoFerroic Devices (CNFD). Igor Žutić received his Ph.D. in theoretical physics at the University of Minnesota. His work spans a range of topics from high-temperature superconductors and ferromagnetism that can get stronger as the temperature is increased, to prediction of various spin-based devices. He is a recipient of 2006 National Science Foundation CAREER Award, 2005 National Research Council/American Society for Engineering Education Postdoctoral Research Award, and the National Research Council Fellowship (2003-2005). His research is supported by the National Science Foundation, the Office of Naval Research, the Department of Energy, and the Airforce Office of Scientific Research.