Sphere Packings, Lattices and Groups PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Sphere Packings, Lattices and Groups PDF full book. Access full book title Sphere Packings, Lattices and Groups by J.H. Conway. Download full books in PDF and EPUB format.

Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups PDF Author: J.H. Conway
Publisher: Springer Science & Business Media
ISBN: 1475722494
Category : Mathematics
Languages : en
Pages : 724

Book Description
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.

Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups PDF Author: J.H. Conway
Publisher: Springer Science & Business Media
ISBN: 1475722494
Category : Mathematics
Languages : en
Pages : 724

Book Description
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.

Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups PDF Author: John H. Conway
Publisher: Springer Science & Business Media
ISBN: 1475720165
Category : Mathematics
Languages : en
Pages : 690

Book Description
The main themes. This book is mainly concerned with the problem of packing spheres in Euclidean space of dimensions 1,2,3,4,5, . . . . Given a large number of equal spheres, what is the most efficient (or densest) way to pack them together? We also study several closely related problems: the kissing number problem, which asks how many spheres can be arranged so that they all touch one central sphere of the same size; the covering problem, which asks for the least dense way to cover n-dimensional space with equal overlapping spheres; and the quantizing problem, important for applications to analog-to-digital conversion (or data compression), which asks how to place points in space so that the average second moment of their Voronoi cells is as small as possible. Attacks on these problems usually arrange the spheres so their centers form a lattice. Lattices are described by quadratic forms, and we study the classification of quadratic forms. Most of the book is devoted to these five problems. The miraculous enters: the E 8 and Leech lattices. When we investigate those problems, some fantastic things happen! There are two sphere packings, one in eight dimensions, the E 8 lattice, and one in twenty-four dimensions, the Leech lattice A , which are unexpectedly good and very 24 symmetrical packings, and have a number of remarkable and mysterious properties, not all of which are completely understood even today.

Sphere Packings, Lattices and Groups

Sphere Packings, Lattices and Groups PDF Author: John Conway
Publisher: Springer Science & Business Media
ISBN: 1475765681
Category : Mathematics
Languages : en
Pages : 778

Book Description
The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.

Sphere Packings

Sphere Packings PDF Author: Chuanming Zong
Publisher: Springer Science & Business Media
ISBN: 0387227806
Category : Mathematics
Languages : en
Pages : 245

Book Description
Sphere packings is one of the most fascinating and challenging subjects in mathematics. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with other subjects found. This book gives a full account of this fascinating subject, especially its local aspects, discrete aspects, and its proof methods. The book includes both classical and contemporary results and provides a full treatment of the subject.

Perfect Lattices in Euclidean Spaces

Perfect Lattices in Euclidean Spaces PDF Author: Jacques Martinet
Publisher: Springer Science & Business Media
ISBN: 3662051672
Category : Mathematics
Languages : en
Pages : 535

Book Description
Lattices are discrete subgroups of maximal rank in a Euclidean space. To each such geometrical object, we can attach a canonical sphere packing which, assuming some regularity, has a density. The question of estimating the highest possible density of a sphere packing in a given dimension is a fascinating and difficult problem: the answer is known only up to dimension 3. This book thus discusses a beautiful and central problem in mathematics, which involves geometry, number theory, coding theory and group theory, centering on the study of extreme lattices, i.e. those on which the density attains a local maximum, and on the so-called perfection property. Written by a leader in the field, it is closely related to, though disjoint in content from, the classic book by J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, published in the same series as vol. 290. Every chapter except the first and the last contains numerous exercises. For simplicity those chapters involving heavy computational methods contain only few exercises. It includes appendices on Semi-Simple Algebras and Quaternions and Strongly Perfect Lattices.

Complexity of Lattice Problems

Complexity of Lattice Problems PDF Author: Daniele Micciancio
Publisher: Springer Science & Business Media
ISBN: 1461508975
Category : Computers
Languages : en
Pages : 229

Book Description
Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.

From Error-correcting Codes Through Sphere Packings to Simple Groups

From Error-correcting Codes Through Sphere Packings to Simple Groups PDF Author: Thomas M. Thompson
Publisher:
ISBN: 9780883850008
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 252

Book Description


Mordell–Weil Lattices

Mordell–Weil Lattices PDF Author: Matthias Schütt
Publisher: Springer Nature
ISBN: 9813293012
Category : Mathematics
Languages : en
Pages : 436

Book Description
This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface. Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell–Weil lattices. Finally, the book turns to the rank problem—one of the key motivations for the introduction of Mordell–Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.

Sphere Packings, Lattices, and Groups

Sphere Packings, Lattices, and Groups PDF Author: John Horton Conway
Publisher:
ISBN: 9787506213882
Category : Combinatorial packing and covering
Languages : en
Pages : 679

Book Description


Numerical Problems in Crystallography

Numerical Problems in Crystallography PDF Author: M. A. Wahab
Publisher: Springer Nature
ISBN: 9811597545
Category : Science
Languages : en
Pages : 397

Book Description
This book aims at enhancing the understanding of topics in crystallography through solving numerical problems. Designed into nine chapters on major topics in crystallography, the book deals with more than 600 carefully selected solved examples, problems, and multiple-choice questions. Unit cell composition, construction and calculations, Miller indices, structure factor calculations, and X-ray diffraction methods are some of the many useful topics discussed in this book. Each chapter begins with a brief theoretical explanation of the topic followed by solved numerical examples for further clarity on the subject. The topic “crystallography” is interdisciplinary in nature. Its rudimentary knowledge, therefore, is essential to the beginners in physics, chemistry, mathematics, molecular biology, geology, metallurgy, and particularly materials science and mineralogy. This book also is of immense value to senior undergraduate and graduate students of physics, chemistry, and other basic sciences.