Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks PDF full book. Access full book title Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks by Kamal Rahimi Malekshan. Download full books in PDF and EPUB format.

Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks

Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks PDF Author: Kamal Rahimi Malekshan
Publisher:
ISBN:
Category : Ad hoc networks (Computer networks)
Languages : en
Pages : 137

Book Description
The increasingly growing number of mobile devices and volume of mobile data traffic necessitate establishing an effective self-organizing wireless ad hoc network to efficiently utilize radio spectrum and energy. The transmissions time and bandwidth should be dynamically coordinated based on instantaneous traffic load of the links in the network. Energy consumption in a mobile device can be reduced by putting the radio interface into a sleep mode. However, the mobile device cannot receive incoming data packets in the sleep mode. Thus, awake and sleep times of radio interfaces should be carefully planned to avoid missing incoming packets. In a wireless network, links that are far apart in distance can simultaneously transmit using the same bandwidth without interfering reception at destination nodes. Concurrent transmissions should be properly scheduled to maximize spatial spectrum utilization. Also, the transmission power level of each link should be optimized to enhance spectrum and energy efficiencies. First, we present a new energy-efficient medium access control (MAC) scheme for a fully connected wireless ad hoc network. Energy consumption is reduced by periodically putting radio interfaces in the sleep mode and by reducing transmission collisions. The network throughput and average packet transmission delay are also improved because of lower collision and contention overhead. The proposed MAC scheme can achieve energy saving for realtime traffic which requires a low packet transmission delay. An analytical model is established to evaluate the performance of the proposed MAC scheme. Analytical and simulation results demonstrate that the proposed scheme has a significantly lower energy consumption, achieves higher throughput, and has a lower packet transmission delay in comparison with existing power saving MAC protocols. Second, we present a novel distributed MAC scheme based on dynamic space-reservation to effectively coordinate transmissions in a wireless ad hoc network. A set of coordinator nodes distributed over the network area are employed to collect and exchange local network information and to periodically schedule links for transmission in a distributed manner. For each scheduled transmission, a proper space area around the receiver node is reserved to enhance spatial spectrum reuse. Also, the data transmission times are deterministic to minimize idle-listening radio interface energy consumption. Simulation results demonstrate that the proposed scheme achieves substantially higher throughput and has significantly lower energy consumption in comparison with existing schemes. We study joint scheduling and transmission power control in a wireless ad hoc network. We analyze the asymptotic joint optimal scheduling and transmission power control, and determine the maximum spectrum and energy efficiencies in a wireless network. Based on the asymptotic analysis, we propose a novel scheduling and transmission power control scheme to approach the maximum spectrum efficiency, subject to an energy consumption constraint. Simulation results show that the proposed distributed scheme achieves 40% higher throughput than existing schemes. Indeed, the scheduling efficiency of our proposed scheme is about 70% of the asymptotic optimal scheduling and transmission power control. Also, the energy consumption of the proposed scheme is about 20% of the energy consumed using existing MAC protocols. The proposed MAC, scheduling and transmission power control schemes provide effective spectrum sharing and energy management for future wireless hotspot and peer-to-peer communication networks. The presented asymptotic analysis determines the maximum spectrum and energy efficiencies in a wireless network and provides an effective means to efficiently utilize spectrum and energy resources based on network traffic load and energy consumption constrains.

Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks

Spectrum and Energy Efficient Medium Access Control for Wireless Ad Hoc Networks PDF Author: Kamal Rahimi Malekshan
Publisher:
ISBN:
Category : Ad hoc networks (Computer networks)
Languages : en
Pages : 137

Book Description
The increasingly growing number of mobile devices and volume of mobile data traffic necessitate establishing an effective self-organizing wireless ad hoc network to efficiently utilize radio spectrum and energy. The transmissions time and bandwidth should be dynamically coordinated based on instantaneous traffic load of the links in the network. Energy consumption in a mobile device can be reduced by putting the radio interface into a sleep mode. However, the mobile device cannot receive incoming data packets in the sleep mode. Thus, awake and sleep times of radio interfaces should be carefully planned to avoid missing incoming packets. In a wireless network, links that are far apart in distance can simultaneously transmit using the same bandwidth without interfering reception at destination nodes. Concurrent transmissions should be properly scheduled to maximize spatial spectrum utilization. Also, the transmission power level of each link should be optimized to enhance spectrum and energy efficiencies. First, we present a new energy-efficient medium access control (MAC) scheme for a fully connected wireless ad hoc network. Energy consumption is reduced by periodically putting radio interfaces in the sleep mode and by reducing transmission collisions. The network throughput and average packet transmission delay are also improved because of lower collision and contention overhead. The proposed MAC scheme can achieve energy saving for realtime traffic which requires a low packet transmission delay. An analytical model is established to evaluate the performance of the proposed MAC scheme. Analytical and simulation results demonstrate that the proposed scheme has a significantly lower energy consumption, achieves higher throughput, and has a lower packet transmission delay in comparison with existing power saving MAC protocols. Second, we present a novel distributed MAC scheme based on dynamic space-reservation to effectively coordinate transmissions in a wireless ad hoc network. A set of coordinator nodes distributed over the network area are employed to collect and exchange local network information and to periodically schedule links for transmission in a distributed manner. For each scheduled transmission, a proper space area around the receiver node is reserved to enhance spatial spectrum reuse. Also, the data transmission times are deterministic to minimize idle-listening radio interface energy consumption. Simulation results demonstrate that the proposed scheme achieves substantially higher throughput and has significantly lower energy consumption in comparison with existing schemes. We study joint scheduling and transmission power control in a wireless ad hoc network. We analyze the asymptotic joint optimal scheduling and transmission power control, and determine the maximum spectrum and energy efficiencies in a wireless network. Based on the asymptotic analysis, we propose a novel scheduling and transmission power control scheme to approach the maximum spectrum efficiency, subject to an energy consumption constraint. Simulation results show that the proposed distributed scheme achieves 40% higher throughput than existing schemes. Indeed, the scheduling efficiency of our proposed scheme is about 70% of the asymptotic optimal scheduling and transmission power control. Also, the energy consumption of the proposed scheme is about 20% of the energy consumed using existing MAC protocols. The proposed MAC, scheduling and transmission power control schemes provide effective spectrum sharing and energy management for future wireless hotspot and peer-to-peer communication networks. The presented asymptotic analysis determines the maximum spectrum and energy efficiencies in a wireless network and provides an effective means to efficiently utilize spectrum and energy resources based on network traffic load and energy consumption constrains.

Energy Management in Wireless Cellular and Ad-hoc Networks

Energy Management in Wireless Cellular and Ad-hoc Networks PDF Author: Muhammad Zeeshan Shakir
Publisher: Springer
ISBN: 3319275682
Category : Technology & Engineering
Languages : en
Pages : 446

Book Description
This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services.

Energy and Spectrum Efficient Wireless Network Design

Energy and Spectrum Efficient Wireless Network Design PDF Author: Guowang Miao
Publisher: Cambridge University Press
ISBN: 1316194663
Category : Technology & Engineering
Languages : en
Pages : 387

Book Description
Covering the fundamental principles and state-of-the-art cross-layer techniques, this practical guide provides the tools needed to design MIMO- and OFDM-based wireless networks that are both energy- and spectrum-efficient. Technologies are introduced in parallel for both centralized and distributed wireless networks to give you a clear understanding of the similarities and differences between their energy- and spectrum-efficient designs, which is essential for achieving the highest network energy saving without losing performance. Cutting-edge green cellular network design technologies, enabling you to master resource management for next-generation wireless networks based on MIMO and OFDM, and detailed real-world implementation examples are provided to guide your engineering design in both theory and practice. Whether you are a graduate student, a researcher or a practitioner in industry, this is an invaluable guide.

Energy-efficiency Media Access Control in Wireless Ad Hoc Networks

Energy-efficiency Media Access Control in Wireless Ad Hoc Networks PDF Author: Yuefeng Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Spectrum Sharing in Wireless Networks

Spectrum Sharing in Wireless Networks PDF Author: John D. Matyjas
Publisher: CRC Press
ISBN: 1315353350
Category : Computers
Languages : en
Pages : 697

Book Description
Spectrum Sharing in Wireless Networks: Fairness, Efficiency, and Security provides a broad overview of wireless network spectrum sharing in seven distinct sections: The first section examines the big picture and basic principles, explaining the concepts of spectrum sharing, hardware/software function requirements for efficient sharing, and future trends of sharing strategies. The second section contains more than 10 chapters that discuss differing approaches to efficient spectrum sharing. The authors introduce a new coexistence and sharing scheme for multi-hop networks, describe the space-time sharing concept, introduce LTE-U, and examine sharing in broadcast and unicast environments. They then talk about different cooperation strategies to achieve mutual benefits for primary users (PU) and secondary users (SU), discuss protocols in a spectrum sharing context, and provide different game theory models between PUs and SUs. The third section explains how to model the interactions of PUs and SUs, using an efficient calculation method to determine spectrum availability. Additionally, this section explains how to use scheduling models to achieve efficient SU traffic delivery. The subject of the fourth section is MIMO-oriented design. It focuses on how directional antennas and MIMO antennas greatly enhance wireless network performance. The authors include a few chapters on capacity/rate calculations as well as beamforming issues under MIMO antennas. Power control is covered in the fifth section which also describes the interference-aware power allocation schemes among cognitive radio users and the power control schemes in cognitive radios. The sixth section provides a comprehensive look at security issues, including different types of spectrum sharing attacks and threats as well as corresponding countermeasure schemes. The seventh and final section covers issues pertaining to military applications and examines how the military task protects its data flows when sharing the spectrum with civilian applications.

Energy-efficiency Media Access Control in Wireless Ad Hoc Networks

Energy-efficiency Media Access Control in Wireless Ad Hoc Networks PDF Author: Yuefeng Zhou
Publisher:
ISBN:
Category :
Languages : en
Pages : 145

Book Description


Energy Efficient Spectrum Resources Usage in WPANs

Energy Efficient Spectrum Resources Usage in WPANs PDF Author: Luís Miguel Borges
Publisher: CRC Press
ISBN: 1000794733
Category : Technology & Engineering
Languages : en
Pages : 432

Book Description
Wireless Sensor Networks (WSNs) and the Internet of Things are facing tremendous advances both in terms of energy-efficiency as well as in the number of available applications. Consequently, there are challenges that need to be tackled for the future generation of WSNs. After giving an overview of the WSN protocols and IEEE 802.15.4 standard, this book proposes IEEE 802.15.4 Medium Access Control (MAC) sub-layer performance enhancements by employing not only RTS/CTS combined with packet concatenation but also scheduled channel poling (MC-SCP). Results have shown that the use of the RTS/CTS mechanism improves channel efficiency by decreasing the deferral time before transmitting a data packet. Furthermore, the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol enables more efficiency as it allows the aggregation of several acknowledgement responses in one special Block Acknowledgment (BACK) Response packet. The throughput and delay performance have been mathematically derived under both ideal conditions (a channel environment with no transmission errors) and non-ideal conditions (with transmission errors). Simulation results successfully validate the proposed analytical models. This research reveals the importance of an appropriate design for the MAC sub-layer protocol for the desired WSN application. Depending on the mission of the WSN application, different protocols are required. Therefore, the overall performance of a WSN application certainly depends on the development and application of suitable e.g., MAC, network layer protocols.

Spectrum Sharing in Cognitive Radio Networks

Spectrum Sharing in Cognitive Radio Networks PDF Author: Shweta Pandit
Publisher: Springer
ISBN: 3319531476
Category : Technology & Engineering
Languages : en
Pages : 270

Book Description
This book discusses the use of the spectrum sharing techniques in cognitive radio technology, in order to address the problem of spectrum scarcity for future wireless communications. The authors describe a cognitive radio medium access control (MAC) protocol, with which throughput maximization has been achieved. The discussion also includes use of this MAC protocol for imperfect sensing scenarios and its effect on the performance of cognitive radio systems. The authors also discuss how energy efficiency has been maximized in this system, by applying a simple algorithm for optimizing the transmit power of the cognitive user. The study about the channel fading in the cognitive user and licensed user and power adaption policy in this scenario under peak transmit power and interference power constraint is also present in this book.

Ad Hoc Networks

Ad Hoc Networks PDF Author: David Simplot-Ryl
Publisher: Springer Science & Business Media
ISBN: 3642290957
Category : Computers
Languages : bn
Pages : 247

Book Description
This volume constitutes the refereed proceedings of the Third International ICST Conference, ADHOCNETS 2011, held in Paris, France, in September 2011. The 15 revised full papers - selected from 42 submissions - and the 2 invited papers cover several fundamental aspects of ad hoc networking, including security, quality of service, radio and spectrum analysis, mobility, energy efficiency, and deployment. They are organized in topical sections on security and QoS, WSN development and evaluation, radio and spectrum analysis, mobile WSNs, mobile ad hoc networks, and energy.

Distributed Medium Access Control in Wireless Networks

Distributed Medium Access Control in Wireless Networks PDF Author: Ping Wang
Publisher: Springer Science & Business Media
ISBN: 1461466024
Category : Computers
Languages : en
Pages : 117

Book Description
This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network service provider for service class management. Also proposed is a novel busy-tone based distributed MAC scheme for wireless ad hoc networks and a collision-free MAC scheme for wireless mesh networks, respectively, taking the different network characteristics into consideration. The proposed schemes enhance the QoS provisioning capability to real-time traffic and, at the same time, significantly improve the system throughput and fairness performance for data traffic, as compared with the most popular IEEE 802.11 MAC scheme.