Author: Henryk Iwaniec
Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain
ISBN: 1470466228
Category : Mathematics
Languages : en
Pages : 220
Book Description
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
Spectral Methods of Automorphic Forms
Author: Henryk Iwaniec
Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain
ISBN: 1470466228
Category : Mathematics
Languages : en
Pages : 220
Book Description
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
Publisher: American Mathematical Society, Revista Matemática Iberoamericana (RMI), Madrid, Spain
ISBN: 1470466228
Category : Mathematics
Languages : en
Pages : 220
Book Description
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
Automorphic Forms on GL (3,TR)
Author: D. Bump
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196
Book Description
Publisher: Springer
ISBN: 3540390553
Category : Mathematics
Languages : en
Pages : 196
Book Description
Spectral Decomposition and Eisenstein Series
Author: Colette Moeglin
Publisher: Cambridge University Press
ISBN: 9780521418935
Category : Mathematics
Languages : en
Pages : 382
Book Description
A self-contained introduction to automorphic forms, and Eisenstein series and pseudo-series, proving some of Langlands' work at the intersection of number theory and group theory.
Publisher: Cambridge University Press
ISBN: 9780521418935
Category : Mathematics
Languages : en
Pages : 382
Book Description
A self-contained introduction to automorphic forms, and Eisenstein series and pseudo-series, proving some of Langlands' work at the intersection of number theory and group theory.
Six Short Chapters on Automorphic Forms and L-functions
Author: Ze-Li Dou
Publisher: Springer Science & Business Media
ISBN: 3642287085
Category : Mathematics
Languages : en
Pages : 131
Book Description
"Six Short Chapters on Automorphic Forms and L-functions" treats the period conjectures of Shimura and the moment conjecture. These conjectures are of central importance in contemporary number theory, but have hitherto remained little discussed in expository form. The book is divided into six short and relatively independent chapters, each with its own theme, and presents a motivated and lively account of the main topics, providing professionals an overall view of the conjectures and providing researchers intending to specialize in the area a guide to the relevant literature. Ze-Li Dou and Qiao Zhang are both associate professors of Mathematics at Texas Christian University, USA.
Publisher: Springer Science & Business Media
ISBN: 3642287085
Category : Mathematics
Languages : en
Pages : 131
Book Description
"Six Short Chapters on Automorphic Forms and L-functions" treats the period conjectures of Shimura and the moment conjecture. These conjectures are of central importance in contemporary number theory, but have hitherto remained little discussed in expository form. The book is divided into six short and relatively independent chapters, each with its own theme, and presents a motivated and lively account of the main topics, providing professionals an overall view of the conjectures and providing researchers intending to specialize in the area a guide to the relevant literature. Ze-Li Dou and Qiao Zhang are both associate professors of Mathematics at Texas Christian University, USA.
L-Functions and Automorphic Forms
Author: Jan Hendrik Bruinier
Publisher: Springer
ISBN: 3319697129
Category : Mathematics
Languages : en
Pages : 367
Book Description
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Publisher: Springer
ISBN: 3319697129
Category : Mathematics
Languages : en
Pages : 367
Book Description
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Automorphic Forms and Related Topics
Author: Samuele Anni
Publisher: American Mathematical Soc.
ISBN: 147043525X
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains the proceedings of the Building Bridges: 3rd EU/US Summer School and Workshop on Automorphic Forms and Related Topics, which was held in Sarajevo from July 11–22, 2016. The articles summarize material which was presented during the lectures and speed talks during the workshop. These articles address various aspects of the theory of automorphic forms and its relations with the theory of L-functions, the theory of elliptic curves, and representation theory. In addition to mathematical content, the workshop held a panel discussion on diversity and inclusion, which was chaired by a social scientist who has contributed to this volume as well. This volume is intended for researchers interested in expanding their own areas of focus, thus allowing them to “build bridges” to mathematical questions in other fields.
Publisher: American Mathematical Soc.
ISBN: 147043525X
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains the proceedings of the Building Bridges: 3rd EU/US Summer School and Workshop on Automorphic Forms and Related Topics, which was held in Sarajevo from July 11–22, 2016. The articles summarize material which was presented during the lectures and speed talks during the workshop. These articles address various aspects of the theory of automorphic forms and its relations with the theory of L-functions, the theory of elliptic curves, and representation theory. In addition to mathematical content, the workshop held a panel discussion on diversity and inclusion, which was chaired by a social scientist who has contributed to this volume as well. This volume is intended for researchers interested in expanding their own areas of focus, thus allowing them to “build bridges” to mathematical questions in other fields.
Modern Analysis of Automorphic Forms By Example
Author: Paul Garrett
Publisher: Cambridge University Press
ISBN: 1107154006
Category : Mathematics
Languages : en
Pages : 407
Book Description
Volume 1 of a two-volume introduction to the analytical aspects of automorphic forms, featuring proofs of critical results with examples.
Publisher: Cambridge University Press
ISBN: 1107154006
Category : Mathematics
Languages : en
Pages : 407
Book Description
Volume 1 of a two-volume introduction to the analytical aspects of automorphic forms, featuring proofs of critical results with examples.
Modern Analysis of Automorphic Forms By Example: Volume 1
Author: Paul Garrett
Publisher: Cambridge University Press
ISBN: 1108228240
Category : Mathematics
Languages : en
Pages : 407
Book Description
This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 1 features critical results, which are proven carefully and in detail, including discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. Volume 2 features automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields.
Publisher: Cambridge University Press
ISBN: 1108228240
Category : Mathematics
Languages : en
Pages : 407
Book Description
This is Volume 1 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 1 features critical results, which are proven carefully and in detail, including discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. Volume 2 features automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields.
Modern Analysis of Automorphic Forms By Example: Volume 2
Author: Paul Garrett
Publisher: Cambridge University Press
ISBN: 1108669212
Category : Mathematics
Languages : en
Pages : 367
Book Description
This is Volume 2 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 2 features critical results, which are proven carefully and in detail, including automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. Volume 1 features discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields.
Publisher: Cambridge University Press
ISBN: 1108669212
Category : Mathematics
Languages : en
Pages : 367
Book Description
This is Volume 2 of a two-volume book that provides a self-contained introduction to the theory and application of automorphic forms, using examples to illustrate several critical analytical concepts surrounding and supporting the theory of automorphic forms. The two-volume book treats three instances, starting with some small unimodular examples, followed by adelic GL2, and finally GLn. Volume 2 features critical results, which are proven carefully and in detail, including automorphic Green's functions, metrics and topologies on natural function spaces, unbounded operators, vector-valued integrals, vector-valued holomorphic functions, and asymptotics. Volume 1 features discrete decomposition of cuspforms, meromorphic continuation of Eisenstein series, spectral decomposition of pseudo-Eisenstein series, and automorphic Plancherel theorem. With numerous proofs and extensive examples, this classroom-tested introductory text is meant for a second-year or advanced graduate course in automorphic forms, and also as a resource for researchers working in automorphic forms, analytic number theory, and related fields.
Modular Forms, a Computational Approach
Author: William A. Stein
Publisher: American Mathematical Soc.
ISBN: 0821839608
Category : Mathematics
Languages : en
Pages : 290
Book Description
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821839608
Category : Mathematics
Languages : en
Pages : 290
Book Description
This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.