Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds PDF full book. Access full book title Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds by Gerd Grubb. Download full books in PDF and EPUB format.

Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds

Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds PDF Author: Gerd Grubb
Publisher: American Mathematical Soc.
ISBN: 082183536X
Category : Mathematics
Languages : en
Pages : 338

Book Description
In recent years, increasingly complex methods have been brought into play in the treatment of geometric and topological problems for partial differential operators on manifolds. This collection of papers, resulting from a Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, provides a broad picture of these methods with new results. Subjects in the book cover a wide variety of topics, from recent advances in index theory and the more general boundary, to applications of those invariants in geometry, topology, and physics. Papers are grouped into four parts: Part I gives an overview of the subject from various points of view. Part II deals with spectral invariants, such as geometric and topological questions. Part IV deals specifically with problems on manifolds with singularities. The book is suitable for graduate students and researchers interested in spectral problems in geometry.

Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds

Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds PDF Author: Gerd Grubb
Publisher: American Mathematical Soc.
ISBN: 082183536X
Category : Mathematics
Languages : en
Pages : 338

Book Description
In recent years, increasingly complex methods have been brought into play in the treatment of geometric and topological problems for partial differential operators on manifolds. This collection of papers, resulting from a Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, provides a broad picture of these methods with new results. Subjects in the book cover a wide variety of topics, from recent advances in index theory and the more general boundary, to applications of those invariants in geometry, topology, and physics. Papers are grouped into four parts: Part I gives an overview of the subject from various points of view. Part II deals with spectral invariants, such as geometric and topological questions. Part IV deals specifically with problems on manifolds with singularities. The book is suitable for graduate students and researchers interested in spectral problems in geometry.

Connes-Chern Character for Manifolds with Boundary and Eta Cochains

Connes-Chern Character for Manifolds with Boundary and Eta Cochains PDF Author: Matthias Lesch
Publisher: American Mathematical Soc.
ISBN: 0821872966
Category : Mathematics
Languages : en
Pages : 106

Book Description
"November 2012, volume 220, number (end of volume)."

The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold PDF Author: Steven Rosenberg
Publisher: Cambridge University Press
ISBN: 9780521468312
Category : Mathematics
Languages : en
Pages : 190

Book Description
This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

Analysis, Geometry and Topology of Elliptic Operators

Analysis, Geometry and Topology of Elliptic Operators PDF Author: Bernhelm Booss
Publisher: World Scientific
ISBN: 9812773606
Category : Mathematics
Languages : en
Pages : 553

Book Description
Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics. The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski''s work in the theory of elliptic operators. Sample Chapter(s). Contents (42 KB). Contents: On the Mathematical Work of Krzysztof P Wojciechowski: Selected Aspects of the Mathematical Work of Krzysztof P Wojciechowski (M Lesch); Gluing Formulae of Spectral Invariants and Cauchy Data Spaces (J Park); Topological Theories: The Behavior of the Analytic Index under Nontrivial Embedding (D Bleecker); Critical Points of Polynomials in Three Complex Variables (L I Nicolaescu); Chern-Weil Forms Associated with Superconnections (S Paycha & S Scott); Heat Kernel Calculations and Surgery: Non-Laplace Type Operators on Manifolds with Boundary (I G Avramidi); Eta Invariants for Manifold with Boundary (X Dai); Heat Kernels of the Sub-Laplacian and the Laplacian on Nilpotent Lie Groups (K Furutani); Remarks on Nonlocal Trace Expansion Coefficients (G Grubb); An Anomaly Formula for L 2- Analytic Torsions on Manifolds with Boundary (X Ma & W Zhang); Conformal Anomalies via Canonical Traces (S Paycha & S Rosenberg); Noncommutative Geometry: An Analytic Approach to Spectral Flow in von Neumann Algebras (M-T Benameur et al.); Elliptic Operators on Infinite Graphs (J Dodziuk); A New Kind of Index Theorem (R G Douglas); A Note on Noncommutative Holomorphic and Harmonic Functions on the Unit Disk (S Klimek); Star Products and Central Extensions (J Mickelsson); An Elementary Proof of the Homotopy Equivalence between the Restricted General Linear Group and the Space of Fredholm Operators (T Wurzbacher); Theoretical Particle, String and Membrane Physics, and Hamiltonian Dynamics: T-Duality for Non-Free Circle Actions (U Bunke & T Schick); A New Spectral Cancellation in Quantum Gravity (G Esposito et al.); A Generalized Morse Index Theorem (C Zhu). Readership: Researchers in modern global analysis and particle physics.

Analysis, Geometry And Topology Of Elliptic Operators: Papers In Honor Of Krzysztof P Wojciechowski

Analysis, Geometry And Topology Of Elliptic Operators: Papers In Honor Of Krzysztof P Wojciechowski PDF Author: Matthias Lesch
Publisher: World Scientific
ISBN: 9814478024
Category : Mathematics
Languages : en
Pages : 553

Book Description
Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics.The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski's work in the theory of elliptic operators.

Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry

Noncommutative Geometry And Physics 3 - Proceedings Of The Noncommutative Geometry And Physics 2008, On K-theory And D-branes & Proceedings Of The Rims Thematic Year 2010 On Perspectives In Deformation Quantization And Noncommutative Geometry PDF Author: Giuseppe Dito
Publisher: World Scientific
ISBN: 9814425028
Category : Mathematics
Languages : en
Pages : 537

Book Description
Noncommutative differential geometry is a novel approach to geometry, aimed in part at applications in physics. It was founded in the early eighties by the 1982 Fields Medalist Alain Connes on the basis of his fundamental works in operator algebras. It is now a very active branch of mathematics with actual and potential applications to a variety of domains in physics ranging from solid state to quantization of gravity. The strategy is to formulate usual differential geometry in a somewhat unusual manner, using in particular operator algebras and related concepts, so as to be able to plug in noncommutativity in a natural way. Algebraic tools such as K-theory and cyclic cohomology and homology play an important role in this field. It is an important topic both for mathematics and physics.

Old and New Aspects in Spectral Geometry

Old and New Aspects in Spectral Geometry PDF Author: M.-E. Craioveanu
Publisher: Springer Science & Business Media
ISBN: 9781402000522
Category : Mathematics
Languages : en
Pages : 330

Book Description
It is known that to any Riemannian manifold (M, g ) , with or without boundary, one can associate certain fundamental objects. Among them are the Laplace-Beltrami opera tor and the Hodge-de Rham operators, which are natural [that is, they commute with the isometries of (M,g)], elliptic, self-adjoint second order differential operators acting on the space of real valued smooth functions on M and the spaces of smooth differential forms on M, respectively. If M is closed, the spectrum of each such operator is an infinite divergent sequence of real numbers, each eigenvalue being repeated according to its finite multiplicity. Spectral Geometry is concerned with the spectra of these operators, also the extent to which these spectra determine the geometry of (M, g) and the topology of M. This problem has been translated by several authors (most notably M. Kac). into the col loquial question "Can one hear the shape of a manifold?" because of its analogy with the wave equation. This terminology was inspired from earlier results of H. Weyl. It is known that the above spectra cannot completely determine either the geometry of (M , g) or the topology of M. For instance, there are examples of pairs of closed Riemannian manifolds with the same spectra corresponding to the Laplace-Beltrami operators, but which differ substantially in their geometry and which are even not homotopically equiva lent.

Spectral Flow

Spectral Flow PDF Author: Nora Doll
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111172473
Category : Mathematics
Languages : en
Pages : 460

Book Description


Elliptic Mixed, Transmission and Singular Crack Problems

Elliptic Mixed, Transmission and Singular Crack Problems PDF Author: Gohar Harutyunyan
Publisher: European Mathematical Society
ISBN: 9783037190401
Category : Mathematics
Languages : en
Pages : 782

Book Description
Mixed, transmission, or crack problems belong to the analysis of boundary value problems on manifolds with singularities. The Zaremba problem with a jump between Dirichlet and Neumann conditions along an interface on the boundary is a classical example. The central theme of this book is to study mixed problems in standard Sobolev spaces as well as in weighted edge spaces where the interfaces are interpreted as edges. Parametrices and regularity of solutions are obtained within a systematic calculus of boundary value problems on manifolds with conical or edge singularities. This calculus allows singularities on the interface and homotopies between mixed and crack problems. Additional edge conditions are computed in terms of relative index results. In a detailed final chapter, the intuitive ideas of the approach are illustrated, and there is a discussion of future challenges. A special feature of the text is the inclusion of many worked-out examples which help the reader to appreciate the scope of the theory and to treat new cases of practical interest. This book is addressed to mathematicians and physicists interested in models with singularities, associated boundary value problems, and their solvability strategies based on pseudo-differential operators. The material is also useful for students in higher semesters and young researchers, as well as for experienced specialists working in analysis on manifolds with geometric singularities, the applications of index theory and spectral theory, operator algebras with symbolic structures, quantisation, and asymptotic analysis.

An Introduction to Manifolds

An Introduction to Manifolds PDF Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426

Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.