Speciated Organic Composition of Atmospheric Aerosols

Speciated Organic Composition of Atmospheric Aerosols PDF Author: Brent James Williams
Publisher:
ISBN:
Category :
Languages : en
Pages : 468

Book Description


Environmental Chemistry of Aerosols

Environmental Chemistry of Aerosols PDF Author: Ian Colbeck
Publisher: John Wiley & Sons
ISBN: 1405139196
Category : Science
Languages : en
Pages : 276

Book Description
Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues such as climate change, stratospheric ozone depletion and air quality. In urban environments, aerosol particles can affect human health through their inhalation. Atmospheric aerosols originate from naturally occurring processes, such as volcanic emissions, sea spray and mineral dust emissions, or from anthropogenic activity such as industry and combustion processes. Aerosols present pathways for reactions, transport, and deposition that would not occur in the gas phase alone. Understanding the ways in which aerosols behave, evolve, and exert these effects requires knowledge of their formation and removal mechanism, transport processes, as well as their physical and chemical characteristics. Motivated by climate change and adverse health effects of traffic-related air pollution, aerosol research has intensified over the past couple of decades, and recent scientific advances offer an improved understanding of the mechanisms and factors controlling the chemistry of atmospheric aerosols. Environmental Chemistry of Aerosols brings together the current state of knowledge of aerosol chemistry, with chapters written by international leaders in the field. It will serve as an authoritative and practical reference for scientists studying the Earth’s atmosphere and as an educational and training resource for both postgraduate students and professional atmospheric scientists.

Chemical Characterization and Source Apportionment of Atmospheric Aerosols in Urban and Rural Regions

Chemical Characterization and Source Apportionment of Atmospheric Aerosols in Urban and Rural Regions PDF Author: Caroline Parworth
Publisher:
ISBN: 9780355594157
Category :
Languages : en
Pages : 0

Book Description
Aerosols, or particulate matter (PM), can affect climate through scattering and absorption of radiation and influence the radiative properties, precipitation efficiency, thickness, and lifetime of clouds. Aerosols are one of the greatest sources of uncertainty in climate model predictions of radiative forcing. To fully understand the sources of uncertainty contributing to the radiative properties of aerosols, measurements of PM mass, composition, and size distribution are needed globally and seasonally. To add to the current understanding of the seasonal and temporal variations in aerosol composition and chemistry, this study has focused on the quantification, speciation, and characterization of atmospheric PM in urban and rural regions of the United States (US) for short and long periods of time. In the first two chapters, we focus on 1 month of aerosol and gas-phase measurements taken in Fresno, CA, an urban and agricultural area, during the National Aeronautics and Space Administration's (NASA) field study called DISCOVER-AQ. This air quality measurement supersite included a plethora of highly detailed chemical measurements of aerosols and gases, which were made at the same time as similar aircraft column measurements of aerosols and gases. The goal of DISCOVER-AQ is to improve the interpretation of satellite observations to approximate surface conditions relating to air quality, which can be achieved by making concurrent ground- and aircraft-based measurements of aerosols and gases. We begin in chapter 2 by exploring the urban aerosol and gas-phase dataset from the NASA DISCOVER-AQ study in California. Specifically, we discuss the chemical composition and mass concentration of water-soluble PM2.5 that were measured using a particle-into-liquid sampler with ion chromatography (PILS-IC) in Fresno, California from January 13–February 10, 2013. This data was analyzed for ionic inorganic species, organic acids and amines. Gas-phase species including HNO3 and NH3 were collected with annular denuders and analyzed using ion chromatography. Using the thermodynamic E-AIM model, inorganic particle water mass concentration and pH were calculated for the first time in this area. Organic particle water mass concentration was calculated from [kappa]-Köhler theory. In chapter 3 further analysis of the aerosol- and gas-phase data measured during DISCOVER-AQ was performed to determine the effectiveness of a local residential wood burning curtailment program in improving air quality. Using aerosol speciation and concentration measurements from the 2013 winter DISCOVER-AQ study in Fresno, CA, we investigate the impact of residential wood burning restrictions on fine particulate mass concentration and composition. Key species associated with biomass burning in this region include K+, acetonitrile, black carbon, and biomass burning organic aerosol (BBOA), which represents primary organic aerosol associated with residential wood burning. Reductions in acetonitrile associated with wood burning restrictions even at night were not observed and most likely associated with stagnant conditions during curtailment periods that led to the buildup of this long-lived gas. In chapter 4 we transition to the rural aerosol dataset from the DOE SGP site. We discuss the chemical composition and mass concentration of non-refractory submicron aerosols (NR-PM1) that were measured with an aerosol chemical speciation monitor (ACSM) at the DOE SGP site from November 2010 through June 2012. Positive matrix factorization (PMF) was performed on the measured organic aerosol (OA) mass spectral matrix using a newly developed rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach captured the dynamic variations of the chemical properties of the OA factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a BBOA factor. Sources of NR-PM1 species at the SGP site were determined from back trajectory analyses. NR-PM1 mass concentration was dominated by organics for the majority of the study with the exception of winter, when NH4N33 increased due to transport of precursor species from surrounding urban and agricultural regions and also due to cooler temperatures. Chapter 5 is a continuation of chapter 4, where we will explore the use of the multilinear engine (ME-2) as a factor analysis technique, which is an algorithm used for solving the bilinear model called positive matrix factorization (PMF). The importance of ME-2 and its potential application on the long-term aerosol chemical speciation monitor (ACSM) data collected from the Department of Energy (DOE) Southern Great Plains (SPG) site will be discussed. ME-2 was performed on 19 months of OA mass spectral data obtained from the ACSM at the SGP site. Evaluation of ME-2 results are presented, followed by comparison of ME-2 factor results with corresponding OACOMP factor results reported in chapter 4. We show that ME-2 can determine a biomass burning organic aerosol (BBOA) factor during periods when OACOMP cannot. (Abstract shortened by ProQuest.)

Atmospheric Aerosols

Atmospheric Aerosols PDF Author: Hayder Abdul-Razzak
Publisher: BoD – Books on Demand
ISBN: 9535107283
Category : Science
Languages : en
Pages : 494

Book Description
The book is divided into two sections. The first section presents characterization of atmospheric aerosols and their impact on regional climate from East Asia to the Pacific. Ground-based, air-born, and satellite data were collected and analyzed. Detailed information about measurement techniques and atmospheric conditions were provided as well. In the second section, authors provide detailed information about the organic and inorganic constituents of atmospheric aerosols. They discuss the chemical and physical processes, temporal and spatial distribution, emissions, formation, and transportation of aerosol particles. In addition, new measurement techniques are introduced. This book hopes to serve as a useful resource to resolve some of the issues associated with the complex nature of the interaction between atmospheric aerosols and climatology.

The Chemical Composition of the Atmospheric Aerosol

The Chemical Composition of the Atmospheric Aerosol PDF Author: Kenneth A. Rahn
Publisher:
ISBN:
Category : Atmosphere
Languages : en
Pages : 296

Book Description


A Molecular Characterization of Biogenic Secondary Organic Aerosol by High-resolution Time-of-flight Mass Spectrometry

A Molecular Characterization of Biogenic Secondary Organic Aerosol by High-resolution Time-of-flight Mass Spectrometry PDF Author: Felipe Daniel Lopez-Hilfiker
Publisher:
ISBN:
Category :
Languages : en
Pages : 178

Book Description
The guiding question to this research is: To what extent and by what mechanisms do biogenic volatile organic compounds contribute to atmospheric aerosol mass? To address this question we need to understand the chemistry that produces condensable vapors which when in the presence of particles may partition onto the aerosol surface depending on their chemical and physical properties. I developed an insitu gas and aerosol sampling system, the FIGAERO (Filter Inlet for Gases and AEROsol) to speciate gas and particle phase organics derived from photochemical reactions with biogenic volatile organic compounds under both field and laboratory conditions. By coupling the FIGAERO to a High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer (HR-TOF-CIMS) I am able to elucidate chemical pathways by identifying elemental compositions and in some cases functional groups present in the detected molecular ions. The coupling of the FIGAERO to the HR-TOF-CIMS also allows the estimation of effective vapor pressures of the aerosol components and this information can be used to improve vapor pressure models and test associated partitioning theories and parameterizations. The approach also provides hundreds of speciated chemical tracers that can be correlated with traditional environmental and chemical measurements (e.g AMS, NOx, SO2, SMPS, VOC) to help derive sources and sinks and to constrain the mechanisms responsible for the formation and growth of organic aerosol. Measurements obtained across a wide range of conditions and locations allowing connections and contrasts between different chemical systems, providing insights into generally controlling factors of secondary organic aerosol (SOA) and its properties.

Speciation of Atmospheric Organic Aerosol

Speciation of Atmospheric Organic Aerosol PDF Author: Xiao He
Publisher:
ISBN:
Category :
Languages : en
Pages : 198

Book Description


Measurements to Evaluate the Benchmark Properties of Atmospheric Aerosols

Measurements to Evaluate the Benchmark Properties of Atmospheric Aerosols PDF Author: Bernard G. Mendonça
Publisher:
ISBN:
Category : Aerosols
Languages : en
Pages : 36

Book Description
This report was adapted from a Master's thesis supported by an ERL long-term University assignment at Colorado State University Fort Collins, Colorado pg. ii

Aerosols in Atmospheric Chemistry

Aerosols in Atmospheric Chemistry PDF Author: Yue Zhang
Publisher: American Chemical Society
ISBN: 0841299293
Category : Science
Languages : en
Pages : 176

Book Description
The uncertainties in the aerosol effects on radiative forcing limit our knowledge of climate change, presenting us with an important research challenge. Aerosols in Atmospheric Chemistry introduces basic concepts about the characterization, formation, and impacts of ambient aerosol particles as an introduction to graduate students new to the field. Each chapter also provides an up-to-date synopsis of the latest knowledge of aerosol particles in atmospheric chemistry.

Atmospheric Aerosol Properties

Atmospheric Aerosol Properties PDF Author: Kirill Ya. Kondratyev
Publisher: Springer Science & Business Media
ISBN: 3540376984
Category : Science
Languages : en
Pages : 595

Book Description
This book provides the first comprehensive analysis of how aerosols form in the atmosphere through in situ processes as well as via transport from the surface (dust storms, seas spray, biogenic emissions, forest fires etc.). Such an analysis has been followed by the consideration of both observation data (various field observational experiments) and numerical modeling results to assess climate impacts of aerosols bearing in mind that these impacts are the most significant uncertainty in studying natural and anthropogenic causes of climate change.