Author: A.M. Mathai
Publisher: Springer Science & Business Media
ISBN: 0387758941
Category : Science
Languages : en
Pages : 480
Book Description
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
Special Functions for Applied Scientists
Author: A.M. Mathai
Publisher: Springer Science & Business Media
ISBN: 0387758941
Category : Science
Languages : en
Pages : 480
Book Description
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
Publisher: Springer Science & Business Media
ISBN: 0387758941
Category : Science
Languages : en
Pages : 480
Book Description
This book, written by a highly distinguished author, provides the required mathematical tools for researchers active in the physical sciences. The book presents a full suit of elementary functions for scholars at PhD level. The opening chapter introduces elementary classical special functions. The final chapter is devoted to the discussion of functions of matrix argument in the real case. The text and exercises have been class-tested over five different years.
Special Functions of Mathematics for Engineers
Author: Larry C. Andrews
Publisher: SPIE Press
ISBN: 9780819426161
Category : Mathematics
Languages : en
Pages : 512
Book Description
Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.
Publisher: SPIE Press
ISBN: 9780819426161
Category : Mathematics
Languages : en
Pages : 512
Book Description
Modern engineering and physical science applications demand a thorough knowledge of applied mathematics, particularly special functions. These typically arise in applications such as communication systems, electro-optics, nonlinear wave propagation, electromagnetic theory, electric circuit theory, and quantum mechanics. This text systematically introduces special functions and explores their properties and applications in engineering and science.
A Handbook of Generalized Special Functions for Statistical and Physical Sciences
Author: A. M. Mathai
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
Complicated generalized special functions such as Meijer's G-functions and functions of matrix arguments are here presented at a level suitable for every potential user. This handbook is thus a valuable reference source and a manual for researchers and advanced students in mathematical statistics, mathematical physics, several branches of mathematics, engineering problems, econometrics, and various applied areas where transcendental functions are used.
Publisher: Oxford University Press, USA
ISBN:
Category : Mathematics
Languages : en
Pages : 264
Book Description
Complicated generalized special functions such as Meijer's G-functions and functions of matrix arguments are here presented at a level suitable for every potential user. This handbook is thus a valuable reference source and a manual for researchers and advanced students in mathematical statistics, mathematical physics, several branches of mathematics, engineering problems, econometrics, and various applied areas where transcendental functions are used.
Theory and Applications of Special Functions for Scientists and Engineers
Author: Xiao-Jun Yang
Publisher: Springer
ISBN: 9789813363366
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.
Publisher: Springer
ISBN: 9789813363366
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book provides the knowledge of the newly-established supertrigonometric and superhyperbolic functions with the special functions such as Mittag-Leffler, Wiman, Prabhakar, Miller-Ross, Rabotnov, Lorenzo-Hartley, Sonine, Wright and Kohlrausch-Williams-Watts functions, Gauss hypergeometric series and Clausen hypergeometric series. The special functions can be considered to represent a great many of the real-world phenomena in mathematical physics, engineering and other applied sciences. The audience benefits of new and original information and references in the areas of the special functions applied to model the complex problems with the power-law behaviors. The results are important and interesting for scientists and engineers to represent the complex phenomena arising in applied sciences therefore graduate students and researchers in mathematics, physics and engineering might find this book appealing.
Special Functions of Mathematical (Geo-)Physics
Author: Willi Freeden
Publisher: Springer Science & Business Media
ISBN: 3034805632
Category : Mathematics
Languages : en
Pages : 505
Book Description
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
Publisher: Springer Science & Business Media
ISBN: 3034805632
Category : Mathematics
Languages : en
Pages : 505
Book Description
Special functions enable us to formulate a scientific problem by reduction such that a new, more concrete problem can be attacked within a well-structured framework, usually in the context of differential equations. A good understanding of special functions provides the capacity to recognize the causality between the abstractness of the mathematical concept and both the impact on and cross-sectional importance to the scientific reality. The special functions to be discussed in this monograph vary greatly, depending on the measurement parameters examined (gravitation, electric and magnetic fields, deformation, climate observables, fluid flow, etc.) and on the respective field characteristic (potential field, diffusion field, wave field). The differential equation under consideration determines the type of special functions that are needed in the desired reduction process. Each chapter closes with exercises that reflect significant topics, mostly in computational applications. As a result, readers are not only directly confronted with the specific contents of each chapter, but also with additional knowledge on mathematical fields of research, where special functions are essential to application. All in all, the book is an equally valuable resource for education in geomathematics and the study of applied and harmonic analysis. Students who wish to continue with further studies should consult the literature given as supplements for each topic covered in the exercises.
Special Functions in Physics with MATLAB
Author: Wolfgang Schweizer
Publisher: Springer Nature
ISBN: 3030642321
Category : Science
Languages : en
Pages : 282
Book Description
This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book’s primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
Publisher: Springer Nature
ISBN: 3030642321
Category : Science
Languages : en
Pages : 282
Book Description
This handbook focuses on special functions in physics in the real and complex domain. It covers more than 170 different functions with additional numerical hints for efficient computation, which are useful to anyone who needs to program with other programming languages as well. The book comes with MATLAB-based programs for each of these functions and a detailed html-based documentation. Some of the explained functions are: Gamma and Beta functions; Legendre functions, which are linked to quantum mechanics and electrodynamics; Bessel functions; hypergeometric functions, which play an important role in mathematical physics; orthogonal polynomials, which are largely used in computational physics; and Riemann zeta functions, which play an important role, e.g., in quantum chaos or string theory. The book’s primary audience are scientists, professionals working in research areas of industries, and advanced students in physics, applied mathematics, and engineering.
Numerical Methods for Special Functions
Author: Amparo Gil
Publisher: SIAM
ISBN: 9780898717822
Category : Mathematics
Languages : en
Pages : 431
Book Description
Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).
Publisher: SIAM
ISBN: 9780898717822
Category : Mathematics
Languages : en
Pages : 431
Book Description
Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).
Special Functions of Mathematical Physics
Author: NIKIFOROV
Publisher: Springer Science & Business Media
ISBN: 1475715951
Category : Mathematics
Languages : en
Pages : 443
Book Description
With students of Physics chiefly in mind, we have collected the material on special functions that is most important in mathematical physics and quan tum mechanics. We have not attempted to provide the most extensive collec tion possible of information about special functions, but have set ourselves the task of finding an exposition which, based on a unified approach, ensures the possibility of applying the theory in other natural sciences, since it pro vides a simple and effective method for the independent solution of problems that arise in practice in physics, engineering and mathematics. For the American edition we have been able to improve a number of proofs; in particular, we have given a new proof of the basic theorem (§3). This is the fundamental theorem of the book; it has now been extended to cover difference equations of hypergeometric type (§§12, 13). Several sections have been simplified and contain new material. We believe that this is the first time that the theory of classical or thogonal polynomials of a discrete variable on both uniform and nonuniform lattices has been given such a coherent presentation, together with its various applications in physics.
Publisher: Springer Science & Business Media
ISBN: 1475715951
Category : Mathematics
Languages : en
Pages : 443
Book Description
With students of Physics chiefly in mind, we have collected the material on special functions that is most important in mathematical physics and quan tum mechanics. We have not attempted to provide the most extensive collec tion possible of information about special functions, but have set ourselves the task of finding an exposition which, based on a unified approach, ensures the possibility of applying the theory in other natural sciences, since it pro vides a simple and effective method for the independent solution of problems that arise in practice in physics, engineering and mathematics. For the American edition we have been able to improve a number of proofs; in particular, we have given a new proof of the basic theorem (§3). This is the fundamental theorem of the book; it has now been extended to cover difference equations of hypergeometric type (§§12, 13). Several sections have been simplified and contain new material. We believe that this is the first time that the theory of classical or thogonal polynomials of a discrete variable on both uniform and nonuniform lattices has been given such a coherent presentation, together with its various applications in physics.
Special Functions
Author: George E. Andrews
Publisher: Cambridge University Press
ISBN: 9780521789882
Category : Mathematics
Languages : en
Pages : 684
Book Description
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Publisher: Cambridge University Press
ISBN: 9780521789882
Category : Mathematics
Languages : en
Pages : 684
Book Description
An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.
Special Functions for Scientists and Engineers
Author: W. W. Bell
Publisher: Courier Corporation
ISBN: 0486317560
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Physics, chemistry, and engineering undergraduates will benefit from this straightforward guide to special functions. Its topics possess wide applications in quantum mechanics, electrical engineering, and many other fields. 1968 edition. Includes 25 figures.
Publisher: Courier Corporation
ISBN: 0486317560
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Physics, chemistry, and engineering undergraduates will benefit from this straightforward guide to special functions. Its topics possess wide applications in quantum mechanics, electrical engineering, and many other fields. 1968 edition. Includes 25 figures.