Author: Jules S. Damji
Publisher: "O'Reilly Media, Inc."
ISBN: 1492049999
Category : Computers
Languages : en
Pages : 390
Book Description
Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Learning Spark
Author: Jules S. Damji
Publisher: O'Reilly Media
ISBN: 1492050016
Category : Computers
Languages : en
Pages : 400
Book Description
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Publisher: O'Reilly Media
ISBN: 1492050016
Category : Computers
Languages : en
Pages : 400
Book Description
Data is bigger, arrives faster, and comes in a variety of formats—and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, you’ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Learning Spark
Author: Holden Karau
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359051
Category : Computers
Languages : en
Pages : 289
Book Description
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Publisher: "O'Reilly Media, Inc."
ISBN: 1449359051
Category : Computers
Languages : en
Pages : 289
Book Description
Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
The Spark of Learning
Author: Sarah Rose Cavanagh
Publisher:
ISBN: 9781943665327
Category : Affective education
Languages : en
Pages : 0
Book Description
Informed by psychology and neuroscience, Cavanagh argues that in order to capture students' attention, harness their working memory, bolster their long-term retention, and enhance their motivation, educators should consider the emotional impact of their teaching style and course design.
Publisher:
ISBN: 9781943665327
Category : Affective education
Languages : en
Pages : 0
Book Description
Informed by psychology and neuroscience, Cavanagh argues that in order to capture students' attention, harness their working memory, bolster their long-term retention, and enhance their motivation, educators should consider the emotional impact of their teaching style and course design.
Spark: The Definitive Guide
Author: Bill Chambers
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Publisher: "O'Reilly Media, Inc."
ISBN: 1491912294
Category : Computers
Languages : en
Pages : 594
Book Description
Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. Youâ??ll explore the basic operations and common functions of Sparkâ??s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Sparkâ??s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasetsâ??Sparkâ??s core APIsâ??through worked examples Dive into Sparkâ??s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Sparkâ??s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Spark
Author: John J. Ratey
Publisher: Little, Brown Spark
ISBN: 0316113506
Category : Health & Fitness
Languages : en
Pages : 200
Book Description
Bestselling author and renowned psychiatrist Dr. Ratey presents a groundbreaking and fascinating investigation into the transformative effects of exercise on the brain.
Publisher: Little, Brown Spark
ISBN: 0316113506
Category : Health & Fitness
Languages : en
Pages : 200
Book Description
Bestselling author and renowned psychiatrist Dr. Ratey presents a groundbreaking and fascinating investigation into the transformative effects of exercise on the brain.
Spark Learning
Author: Ramsey Musallam
Publisher:
ISBN: 9781946444134
Category : Education
Languages : en
Pages : 166
Book Description
Inspired by his popular TED Talk "3 Rules to Spark Learning," this book combines brain science research, proven teaching methods, and Ramsey's personal story to empower you to improve your students' learning experiences by inspiring inquiry and harnessing its benefits. If you want to engage students, this is the book for you.
Publisher:
ISBN: 9781946444134
Category : Education
Languages : en
Pages : 166
Book Description
Inspired by his popular TED Talk "3 Rules to Spark Learning," this book combines brain science research, proven teaching methods, and Ramsey's personal story to empower you to improve your students' learning experiences by inspiring inquiry and harnessing its benefits. If you want to engage students, this is the book for you.
Learning Spark
Author: Jules S. Damji
Publisher: "O'Reilly Media, Inc."
ISBN: 1492049999
Category : Computers
Languages : en
Pages : 390
Book Description
Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Publisher: "O'Reilly Media, Inc."
ISBN: 1492049999
Category : Computers
Languages : en
Pages : 390
Book Description
Data is bigger, arrives faster, and comes in a variety of formatsâ??and it all needs to be processed at scale for analytics or machine learning. But how can you process such varied workloads efficiently? Enter Apache Spark. Updated to include Spark 3.0, this second edition shows data engineers and data scientists why structure and unification in Spark matters. Specifically, this book explains how to perform simple and complex data analytics and employ machine learning algorithms. Through step-by-step walk-throughs, code snippets, and notebooks, youâ??ll be able to: Learn Python, SQL, Scala, or Java high-level Structured APIs Understand Spark operations and SQL Engine Inspect, tune, and debug Spark operations with Spark configurations and Spark UI Connect to data sources: JSON, Parquet, CSV, Avro, ORC, Hive, S3, or Kafka Perform analytics on batch and streaming data using Structured Streaming Build reliable data pipelines with open source Delta Lake and Spark Develop machine learning pipelines with MLlib and productionize models using MLflow
Learning Spark SQL
Author: Aurobindo Sarkar
Publisher: Packt Publishing Ltd
ISBN: 1785887351
Category : Computers
Languages : en
Pages : 445
Book Description
Design, implement, and deliver successful streaming applications, machine learning pipelines and graph applications using Spark SQL API About This Book Learn about the design and implementation of streaming applications, machine learning pipelines, deep learning, and large-scale graph processing applications using Spark SQL APIs and Scala. Learn data exploration, data munging, and how to process structured and semi-structured data using real-world datasets and gain hands-on exposure to the issues and challenges of working with noisy and "dirty" real-world data. Understand design considerations for scalability and performance in web-scale Spark application architectures. Who This Book Is For If you are a developer, engineer, or an architect and want to learn how to use Apache Spark in a web-scale project, then this is the book for you. It is assumed that you have prior knowledge of SQL querying. A basic programming knowledge with Scala, Java, R, or Python is all you need to get started with this book. What You Will Learn Familiarize yourself with Spark SQL programming, including working with DataFrame/Dataset API and SQL Perform a series of hands-on exercises with different types of data sources, including CSV, JSON, Avro, MySQL, and MongoDB Perform data quality checks, data visualization, and basic statistical analysis tasks Perform data munging tasks on publically available datasets Learn how to use Spark SQL and Apache Kafka to build streaming applications Learn key performance-tuning tips and tricks in Spark SQL applications Learn key architectural components and patterns in large-scale Spark SQL applications In Detail In the past year, Apache Spark has been increasingly adopted for the development of distributed applications. Spark SQL APIs provide an optimized interface that helps developers build such applications quickly and easily. However, designing web-scale production applications using Spark SQL APIs can be a complex task. Hence, understanding the design and implementation best practices before you start your project will help you avoid these problems. This book gives an insight into the engineering practices used to design and build real-world, Spark-based applications. The book's hands-on examples will give you the required confidence to work on any future projects you encounter in Spark SQL. It starts by familiarizing you with data exploration and data munging tasks using Spark SQL and Scala. Extensive code examples will help you understand the methods used to implement typical use-cases for various types of applications. You will get a walkthrough of the key concepts and terms that are common to streaming, machine learning, and graph applications. You will also learn key performance-tuning details including Cost Based Optimization (Spark 2.2) in Spark SQL applications. Finally, you will move on to learning how such systems are architected and deployed for a successful delivery of your project. Style and approach This book is a hands-on guide to designing, building, and deploying Spark SQL-centric production applications at scale.
Publisher: Packt Publishing Ltd
ISBN: 1785887351
Category : Computers
Languages : en
Pages : 445
Book Description
Design, implement, and deliver successful streaming applications, machine learning pipelines and graph applications using Spark SQL API About This Book Learn about the design and implementation of streaming applications, machine learning pipelines, deep learning, and large-scale graph processing applications using Spark SQL APIs and Scala. Learn data exploration, data munging, and how to process structured and semi-structured data using real-world datasets and gain hands-on exposure to the issues and challenges of working with noisy and "dirty" real-world data. Understand design considerations for scalability and performance in web-scale Spark application architectures. Who This Book Is For If you are a developer, engineer, or an architect and want to learn how to use Apache Spark in a web-scale project, then this is the book for you. It is assumed that you have prior knowledge of SQL querying. A basic programming knowledge with Scala, Java, R, or Python is all you need to get started with this book. What You Will Learn Familiarize yourself with Spark SQL programming, including working with DataFrame/Dataset API and SQL Perform a series of hands-on exercises with different types of data sources, including CSV, JSON, Avro, MySQL, and MongoDB Perform data quality checks, data visualization, and basic statistical analysis tasks Perform data munging tasks on publically available datasets Learn how to use Spark SQL and Apache Kafka to build streaming applications Learn key performance-tuning tips and tricks in Spark SQL applications Learn key architectural components and patterns in large-scale Spark SQL applications In Detail In the past year, Apache Spark has been increasingly adopted for the development of distributed applications. Spark SQL APIs provide an optimized interface that helps developers build such applications quickly and easily. However, designing web-scale production applications using Spark SQL APIs can be a complex task. Hence, understanding the design and implementation best practices before you start your project will help you avoid these problems. This book gives an insight into the engineering practices used to design and build real-world, Spark-based applications. The book's hands-on examples will give you the required confidence to work on any future projects you encounter in Spark SQL. It starts by familiarizing you with data exploration and data munging tasks using Spark SQL and Scala. Extensive code examples will help you understand the methods used to implement typical use-cases for various types of applications. You will get a walkthrough of the key concepts and terms that are common to streaming, machine learning, and graph applications. You will also learn key performance-tuning details including Cost Based Optimization (Spark 2.2) in Spark SQL applications. Finally, you will move on to learning how such systems are architected and deployed for a successful delivery of your project. Style and approach This book is a hands-on guide to designing, building, and deploying Spark SQL-centric production applications at scale.
Machine Learning with Apache Spark Quick Start Guide
Author: Jillur Quddus
Publisher: Packt Publishing Ltd
ISBN: 1789349370
Category : Computers
Languages : en
Pages : 233
Book Description
Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Publisher: Packt Publishing Ltd
ISBN: 1789349370
Category : Computers
Languages : en
Pages : 233
Book Description
Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.
Spark
Author: Ilya Ganelin
Publisher: John Wiley & Sons
ISBN: 1119254019
Category : Computers
Languages : en
Pages : 216
Book Description
Production-targeted Spark guidance with real-world use cases Spark: Big Data Cluster Computing in Production goes beyond general Spark overviews to provide targeted guidance toward using lightning-fast big-data clustering in production. Written by an expert team well-known in the big data community, this book walks you through the challenges in moving from proof-of-concept or demo Spark applications to live Spark in production. Real use cases provide deep insight into common problems, limitations, challenges, and opportunities, while expert tips and tricks help you get the most out of Spark performance. Coverage includes Spark SQL, Tachyon, Kerberos, ML Lib, YARN, and Mesos, with clear, actionable guidance on resource scheduling, db connectors, streaming, security, and much more. Spark has become the tool of choice for many Big Data problems, with more active contributors than any other Apache Software project. General introductory books abound, but this book is the first to provide deep insight and real-world advice on using Spark in production. Specific guidance, expert tips, and invaluable foresight make this guide an incredibly useful resource for real production settings. Review Spark hardware requirements and estimate cluster size Gain insight from real-world production use cases Tighten security, schedule resources, and fine-tune performance Overcome common problems encountered using Spark in production Spark works with other big data tools including MapReduce and Hadoop, and uses languages you already know like Java, Scala, Python, and R. Lightning speed makes Spark too good to pass up, but understanding limitations and challenges in advance goes a long way toward easing actual production implementation. Spark: Big Data Cluster Computing in Production tells you everything you need to know, with real-world production insight and expert guidance, tips, and tricks.
Publisher: John Wiley & Sons
ISBN: 1119254019
Category : Computers
Languages : en
Pages : 216
Book Description
Production-targeted Spark guidance with real-world use cases Spark: Big Data Cluster Computing in Production goes beyond general Spark overviews to provide targeted guidance toward using lightning-fast big-data clustering in production. Written by an expert team well-known in the big data community, this book walks you through the challenges in moving from proof-of-concept or demo Spark applications to live Spark in production. Real use cases provide deep insight into common problems, limitations, challenges, and opportunities, while expert tips and tricks help you get the most out of Spark performance. Coverage includes Spark SQL, Tachyon, Kerberos, ML Lib, YARN, and Mesos, with clear, actionable guidance on resource scheduling, db connectors, streaming, security, and much more. Spark has become the tool of choice for many Big Data problems, with more active contributors than any other Apache Software project. General introductory books abound, but this book is the first to provide deep insight and real-world advice on using Spark in production. Specific guidance, expert tips, and invaluable foresight make this guide an incredibly useful resource for real production settings. Review Spark hardware requirements and estimate cluster size Gain insight from real-world production use cases Tighten security, schedule resources, and fine-tune performance Overcome common problems encountered using Spark in production Spark works with other big data tools including MapReduce and Hadoop, and uses languages you already know like Java, Scala, Python, and R. Lightning speed makes Spark too good to pass up, but understanding limitations and challenges in advance goes a long way toward easing actual production implementation. Spark: Big Data Cluster Computing in Production tells you everything you need to know, with real-world production insight and expert guidance, tips, and tricks.