Author: Ling Hsiao
Publisher: American Mathematical Soc.
ISBN: 0821819658
Category : Mathematics
Languages : en
Pages : 260
Book Description
This volume resulted from a year-long program at the Morningside Center of Mathematics at the Academia Sinica in Beijing. It presents an overview of nonlinear conversation laws and introduces developments in this expanding field. Zhouping Xin's introductory overview of the subject is followed by lecture notes of leading experts who have made fundamental contributions to this field of research. A. Bressan's theory of $-well-posedness for entropy weak solutions to systems of nonlinear hyperbolic conversation laws in the class of viscosity solutions is one of the most important results in the past two decades; G. Chen discusses weak convergence methods and various applications to many problems; P. Degond details mathematical modelling of semi-conductor devices; B. Perthame describes the theory of asymptotic equivalence between conservation laws and singular kinetic equations; Z. Xin outlines the recent development of the vanishing viscosity problem and nonlinear stability of elementary wave-a major focus of research in the last decade; and the volume concludes with Y. Zheng's lecture on incompressible fluid dynamics. This collection of lectures represents previously unpublished expository and research results of experts in nonlinear conservation laws and is an excellent reference for researchers and advanced graduate students in the areas of nonlinear partial differential equations and nonlinear analysis. Titles in this series are co-published with International Press, Cambridge, MA.
Some Current Topics on Nonlinear Conservation Laws
Author: Ling Hsiao
Publisher: American Mathematical Soc.
ISBN: 0821819658
Category : Mathematics
Languages : en
Pages : 260
Book Description
This volume resulted from a year-long program at the Morningside Center of Mathematics at the Academia Sinica in Beijing. It presents an overview of nonlinear conversation laws and introduces developments in this expanding field. Zhouping Xin's introductory overview of the subject is followed by lecture notes of leading experts who have made fundamental contributions to this field of research. A. Bressan's theory of $-well-posedness for entropy weak solutions to systems of nonlinear hyperbolic conversation laws in the class of viscosity solutions is one of the most important results in the past two decades; G. Chen discusses weak convergence methods and various applications to many problems; P. Degond details mathematical modelling of semi-conductor devices; B. Perthame describes the theory of asymptotic equivalence between conservation laws and singular kinetic equations; Z. Xin outlines the recent development of the vanishing viscosity problem and nonlinear stability of elementary wave-a major focus of research in the last decade; and the volume concludes with Y. Zheng's lecture on incompressible fluid dynamics. This collection of lectures represents previously unpublished expository and research results of experts in nonlinear conservation laws and is an excellent reference for researchers and advanced graduate students in the areas of nonlinear partial differential equations and nonlinear analysis. Titles in this series are co-published with International Press, Cambridge, MA.
Publisher: American Mathematical Soc.
ISBN: 0821819658
Category : Mathematics
Languages : en
Pages : 260
Book Description
This volume resulted from a year-long program at the Morningside Center of Mathematics at the Academia Sinica in Beijing. It presents an overview of nonlinear conversation laws and introduces developments in this expanding field. Zhouping Xin's introductory overview of the subject is followed by lecture notes of leading experts who have made fundamental contributions to this field of research. A. Bressan's theory of $-well-posedness for entropy weak solutions to systems of nonlinear hyperbolic conversation laws in the class of viscosity solutions is one of the most important results in the past two decades; G. Chen discusses weak convergence methods and various applications to many problems; P. Degond details mathematical modelling of semi-conductor devices; B. Perthame describes the theory of asymptotic equivalence between conservation laws and singular kinetic equations; Z. Xin outlines the recent development of the vanishing viscosity problem and nonlinear stability of elementary wave-a major focus of research in the last decade; and the volume concludes with Y. Zheng's lecture on incompressible fluid dynamics. This collection of lectures represents previously unpublished expository and research results of experts in nonlinear conservation laws and is an excellent reference for researchers and advanced graduate students in the areas of nonlinear partial differential equations and nonlinear analysis. Titles in this series are co-published with International Press, Cambridge, MA.
Hyperbolic Conservation Laws in Continuum Physics
Author: Constantine M. Dafermos
Publisher: Springer Science & Business Media
ISBN: 3540290893
Category : Mathematics
Languages : en
Pages : 636
Book Description
This is a lucid and authoritative exposition of the mathematical theory of hyperbolic system laws. The second edition contains a new chapter recounting exciting recent developments on the vanishing viscosity method. Numerous new sections introduce newly derived results. From the reviews: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH
Publisher: Springer Science & Business Media
ISBN: 3540290893
Category : Mathematics
Languages : en
Pages : 636
Book Description
This is a lucid and authoritative exposition of the mathematical theory of hyperbolic system laws. The second edition contains a new chapter recounting exciting recent developments on the vanishing viscosity method. Numerous new sections introduce newly derived results. From the reviews: "The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH
Nonstrictly Hyperbolic Conservation Laws
Author: Barbara Lee Keyfitz
Publisher: American Mathematical Soc.
ISBN: 0821850695
Category : Mathematics
Languages : en
Pages : 148
Book Description
The area of nonstrictly hyperbolic conservation laws is emerging as an important field, not only because it developed from applications of current interest, such as reservoir simulation, visco-elasticity, and multiphase flow, but also because the subject raises interesting mathematical questions of well-posedness, the structure of solutions, and admissibility criteria for weak solutions. The papers in this collection are based on talks presented at an AMS Special Session, held in Anaheim, California, in January 1985. Requiring some background in conservation laws, this collection will be of interest to research mathematicians working in the field of nonstrictly hyperbolic partial differential equations, as well as students who are learning the area and are looking for new applications and challenging problems in this field. The collection provides an overview of the field, examples of applications, descriptions of available techniques, and a bibliography of the literature.
Publisher: American Mathematical Soc.
ISBN: 0821850695
Category : Mathematics
Languages : en
Pages : 148
Book Description
The area of nonstrictly hyperbolic conservation laws is emerging as an important field, not only because it developed from applications of current interest, such as reservoir simulation, visco-elasticity, and multiphase flow, but also because the subject raises interesting mathematical questions of well-posedness, the structure of solutions, and admissibility criteria for weak solutions. The papers in this collection are based on talks presented at an AMS Special Session, held in Anaheim, California, in January 1985. Requiring some background in conservation laws, this collection will be of interest to research mathematicians working in the field of nonstrictly hyperbolic partial differential equations, as well as students who are learning the area and are looking for new applications and challenging problems in this field. The collection provides an overview of the field, examples of applications, descriptions of available techniques, and a bibliography of the literature.
Hyperbolic Problems: Theory, Numerics And Applications (In 2 Volumes)
Author: Tatsien Li
Publisher: World Scientific
ISBN: 9814417106
Category : Mathematics
Languages : en
Pages : 793
Book Description
This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ';Hyperbolic Partial Differential Equations';. It is aimed at mathematicians, researchers in applied sciences and graduate students.
Publisher: World Scientific
ISBN: 9814417106
Category : Mathematics
Languages : en
Pages : 793
Book Description
This two-volume book is devoted to mathematical theory, numerics and applications of hyperbolic problems. Hyperbolic problems have not only a long history but also extremely rich physical background. The development is highly stimulated by their applications to Physics, Biology, and Engineering Sciences; in particular, by the design of effective numerical algorithms. Due to recent rapid development of computers, more and more scientists use hyperbolic partial differential equations and related evolutionary equations as basic tools when proposing new mathematical models of various phenomena and related numerical algorithms.This book contains 80 original research and review papers which are written by leading researchers and promising young scientists, which cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ';Hyperbolic Partial Differential Equations';. It is aimed at mathematicians, researchers in applied sciences and graduate students.
Surveys in Applied Mathematics
Author: Mark I. Freidlin
Publisher: Springer Science & Business Media
ISBN: 1461519918
Category : Mathematics
Languages : en
Pages : 297
Book Description
Volume 2 offers three in-depth articles covering significant areas in applied mathematics research. Chapters feature numerous illustrations, extensive background material and technical details, and abundant examples. The authors analyze nonlinear front propagation for a large class of semilinear partial differential equations using probabilistic methods; examine wave localization phenomena in one-dimensional random media; and offer an extensive introduction to certain model equations for nonlinear wave phenomena.
Publisher: Springer Science & Business Media
ISBN: 1461519918
Category : Mathematics
Languages : en
Pages : 297
Book Description
Volume 2 offers three in-depth articles covering significant areas in applied mathematics research. Chapters feature numerous illustrations, extensive background material and technical details, and abundant examples. The authors analyze nonlinear front propagation for a large class of semilinear partial differential equations using probabilistic methods; examine wave localization phenomena in one-dimensional random media; and offer an extensive introduction to certain model equations for nonlinear wave phenomena.
Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Scientific and Technical Aerospace Reports
Hyperbolic Problems: Theory, Numerics, Applications - Proceedings Of The Fifth International Conference
Author: James Glimm
Publisher: World Scientific
ISBN: 9814548588
Category :
Languages : en
Pages : 510
Book Description
The intellectual center of this proceedings volume is the subject of conservation laws. Conservation laws are the most basic model of many continuum processes, and for this reason they govern the motion of fluids, solids, and plasma. They are basic to the understanding of more complex modeling issues, such as multiphase flow, chemically reacting flow, and non-equilibrium thermodynamics. Equations of this type also arise in novel and unexpected areas, such as the pattern recognition and image processing problem of edge enhancement and detection. The articles in this volume address the entire range of the study of conservation laws, including the fundamental mathematical theory, familiar and novel applications, and the numerical problem of finding effective computational algorithms for the solution of these problems.
Publisher: World Scientific
ISBN: 9814548588
Category :
Languages : en
Pages : 510
Book Description
The intellectual center of this proceedings volume is the subject of conservation laws. Conservation laws are the most basic model of many continuum processes, and for this reason they govern the motion of fluids, solids, and plasma. They are basic to the understanding of more complex modeling issues, such as multiphase flow, chemically reacting flow, and non-equilibrium thermodynamics. Equations of this type also arise in novel and unexpected areas, such as the pattern recognition and image processing problem of edge enhancement and detection. The articles in this volume address the entire range of the study of conservation laws, including the fundamental mathematical theory, familiar and novel applications, and the numerical problem of finding effective computational algorithms for the solution of these problems.
Nonlinear Hyperbolic Problems
Author: Claude Carasso
Publisher: Springer
ISBN: 3540478051
Category : Mathematics
Languages : en
Pages : 356
Book Description
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Publisher: Springer
ISBN: 3540478051
Category : Mathematics
Languages : en
Pages : 356
Book Description
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Quasilinear Hyperbolic Systems And Dissipative Mechanisms
Author: Ling Hsiao
Publisher: World Scientific
ISBN: 9814497185
Category : Mathematics
Languages : en
Pages : 233
Book Description
This book introduces the recent developments in the subject of quasilinear hyperbolic systems with dissipation, such as frictional damping, relaxation, viscosity and heat diffusion. The mathematical theory behind this subject is emphasized in two ways. One emphasis is based on understanding the influence of the dissipation mechanism on the qualitative behavior of solutions, such as the nonlinear diffusive phenomena caused by damping, and other phenomena (including phase transition) for the case with viscosity and heat diffusion. The second emphasis is to take the systems with the dissipation mechanism as an approach to approximating the corresponding system of quasilinear hyperbolic conservation laws - the zero-limit relaxation, or the zero-limit viscosity, and the related topic of nonlinear stability of waves.
Publisher: World Scientific
ISBN: 9814497185
Category : Mathematics
Languages : en
Pages : 233
Book Description
This book introduces the recent developments in the subject of quasilinear hyperbolic systems with dissipation, such as frictional damping, relaxation, viscosity and heat diffusion. The mathematical theory behind this subject is emphasized in two ways. One emphasis is based on understanding the influence of the dissipation mechanism on the qualitative behavior of solutions, such as the nonlinear diffusive phenomena caused by damping, and other phenomena (including phase transition) for the case with viscosity and heat diffusion. The second emphasis is to take the systems with the dissipation mechanism as an approach to approximating the corresponding system of quasilinear hyperbolic conservation laws - the zero-limit relaxation, or the zero-limit viscosity, and the related topic of nonlinear stability of waves.