Theory of Algebraic Functions of One Variable PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Theory of Algebraic Functions of One Variable PDF full book. Access full book title Theory of Algebraic Functions of One Variable by Richard Dedekind. Download full books in PDF and EPUB format.

Theory of Algebraic Functions of One Variable

Theory of Algebraic Functions of One Variable PDF Author: Richard Dedekind
Publisher: American Mathematical Society(RI)
ISBN: 9780821883303
Category : Mathematics
Languages : en
Pages : 0

Book Description
The 1882 Theorie der algebraischen Functionen einer Veränderlichen by Dedekind (1831-1916) and Weber (1842-1913) changed the direction of algebraic geometry and established its foundations by introducing methods from algebraic number theory. They used rings and ideals to give rigorous proofs of results that had previously been obtained in non-rigorous fashion, with the help of analysis and topology. Stillwell (mathematics, U. of San Francisco) believes that the paper still has gems for modern mathematicians that the standard commentaries do not mention. He presents the first English translation of it and provides commentary to the language and thinking of mathematics during the 19th century. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).

Theory of Algebraic Functions of One Variable

Theory of Algebraic Functions of One Variable PDF Author: Richard Dedekind
Publisher: American Mathematical Society(RI)
ISBN: 9780821883303
Category : Mathematics
Languages : en
Pages : 0

Book Description
The 1882 Theorie der algebraischen Functionen einer Veränderlichen by Dedekind (1831-1916) and Weber (1842-1913) changed the direction of algebraic geometry and established its foundations by introducing methods from algebraic number theory. They used rings and ideals to give rigorous proofs of results that had previously been obtained in non-rigorous fashion, with the help of analysis and topology. Stillwell (mathematics, U. of San Francisco) believes that the paper still has gems for modern mathematicians that the standard commentaries do not mention. He presents the first English translation of it and provides commentary to the language and thinking of mathematics during the 19th century. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).

Theory of Algebraic Functions of One Variable

Theory of Algebraic Functions of One Variable PDF Author: Richard Dedekind
Publisher: American Mathematical Soc.
ISBN: 0821890344
Category : Mathematics
Languages : en
Pages : 162

Book Description
This book is the first English translation of the classic long paper Theorie der algebraischen Functionen einer Veranderlichen (Theory of algebraic functions of one variable), published by Dedekind and Weber in 1882. The translation has been enriched by a Translator's Introduction that includes historical background, and also by extensive commentary embedded in the translation itself. The translation, introduction, and commentary provide the first easy access to this important paper for a wide mathematical audience: students, historians of mathematics, and professional mathematicians. Why is the Dedekind-Weber paper important? In the 1850s, Riemann initiated a revolution in algebraic geometry by interpreting algebraic curves as surfaces covering the sphere. He obtained deep and striking results in pure algebra by intuitive arguments about surfaces and their topology. However, Riemann's arguments were not rigorous, and they remained in limbo until 1882, when Dedekind and Weber put them on a sound foundation. The key to this breakthrough was to develop the theory of algebraic functions in analogy with Dedekind's theory of algebraic numbers, where the concept of ideal plays a central role. By introducing such concepts into the theory of algebraic curves, Dedekind and Weber paved the way for modern algebraic geometry.

Introduction to the Theory of Algebraic Functions of One Variable

Introduction to the Theory of Algebraic Functions of One Variable PDF Author: Claude Chevalley
Publisher: American Mathematical Soc.
ISBN: 0821815067
Category : Mathematics
Languages : en
Pages : 204

Book Description
Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.

College Algebra

College Algebra PDF Author: Jay Abramson
Publisher:
ISBN: 9789888407439
Category : Mathematics
Languages : en
Pages : 892

Book Description
College Algebra provides a comprehensive exploration of algebraic principles and meets scope and sequence requirements for a typical introductory algebra course. The modular approach and richness of content ensure that the book meets the needs of a variety of courses. College Algebra offers a wealth of examples with detailed, conceptual explanations, building a strong foundation in the material before asking students to apply what they've learned. Coverage and Scope In determining the concepts, skills, and topics to cover, we engaged dozens of highly experienced instructors with a range of student audiences. The resulting scope and sequence proceeds logically while allowing for a significant amount of flexibility in instruction. Chapters 1 and 2 provide both a review and foundation for study of Functions that begins in Chapter 3. The authors recognize that while some institutions may find this material a prerequisite, other institutions have told us that they have a cohort that need the prerequisite skills built into the course. Chapter 1: Prerequisites Chapter 2: Equations and Inequalities Chapters 3-6: The Algebraic Functions Chapter 3: Functions Chapter 4: Linear Functions Chapter 5: Polynomial and Rational Functions Chapter 6: Exponential and Logarithm Functions Chapters 7-9: Further Study in College Algebra Chapter 7: Systems of Equations and Inequalities Chapter 8: Analytic Geometry Chapter 9: Sequences, Probability and Counting Theory

Number Theory

Number Theory PDF Author: Helmut Koch
Publisher: American Mathematical Soc.
ISBN: 9780821820544
Category : Mathematics
Languages : en
Pages : 390

Book Description
Algebraic number theory is one of the most refined creations in mathematics. It has been developed by some of the leading mathematicians of this and previous centuries. The primary goal of this book is to present the essential elements of algebraic number theory, including the theory of normal extensions up through a glimpse of class field theory. Following the example set for us by Kronecker, Weber, Hilbert and Artin, algebraic functions are handled here on an equal footing with algebraic numbers. This is done on the one hand to demonstrate the analogy between number fields and function fields, which is especially clear in the case where the ground field is a finite field. On the other hand, in this way one obtains an introduction to the theory of 'higher congruences' as an important element of 'arithmetic geometry'. Early chapters discuss topics in elementary number theory, such as Minkowski's geometry of numbers, public-key cryptography and a short proof of the Prime Number Theorem, following Newman and Zagier. Next, some of the tools of algebraic number theory are introduced, such as ideals, discriminants and valuations. These results are then applied to obtain results about function fields, including a proof of the Riemann-Roch Theorem and, as an application of cyclotomic fields, a proof of the first case of Fermat's Last Theorem. There are a detailed exposition of the theory of Hecke $L$-series, following Tate, and explicit applications to number theory, such as the Generalized Riemann Hypothesis. Chapter 9 brings together the earlier material through the study of quadratic number fields. Finally, Chapter 10 gives an introduction to class field theory. The book attempts as much as possible to give simple proofs. It can be used by a beginner in algebraic number theory who wishes to see some of the true power and depth of the subject. The book is suitable for two one-semester courses, with the first four chapters serving to develop the basic material. Chapters 6 through 9 could be used on their own as a second semester course.

Lectures Introductory to the Theory of Functions of Two Complex Variables

Lectures Introductory to the Theory of Functions of Two Complex Variables PDF Author: Andrew Russell Forsyth
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 308

Book Description


Introduction to Analysis in One Variable

Introduction to Analysis in One Variable PDF Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 1470456680
Category : Education
Languages : en
Pages : 264

Book Description
This is a text for students who have had a three-course calculus sequence and who are ready to explore the logical structure of analysis as the backbone of calculus. It begins with a development of the real numbers, building this system from more basic objects (natural numbers, integers, rational numbers, Cauchy sequences), and it produces basic algebraic and metric properties of the real number line as propositions, rather than axioms. The text also makes use of the complex numbers and incorporates this into the development of differential and integral calculus. For example, it develops the theory of the exponential function for both real and complex arguments, and it makes a geometrical study of the curve (expit) (expit), for real t t, leading to a self-contained development of the trigonometric functions and to a derivation of the Euler identity that is very different from what one typically sees. Further topics include metric spaces, the Stone–Weierstrass theorem, and Fourier series.

Algebraic Function Fields and Codes

Algebraic Function Fields and Codes PDF Author: Henning Stichtenoth
Publisher: Springer Science & Business Media
ISBN: 3540768785
Category : Mathematics
Languages : en
Pages : 360

Book Description
This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.

Math with Bad Drawings

Math with Bad Drawings PDF Author: Ben Orlin
Publisher: Black Dog & Leventhal
ISBN: 0316509027
Category : Mathematics
Languages : en
Pages : 556

Book Description
A hilarious reeducation in mathematics-full of joy, jokes, and stick figures-that sheds light on the countless practical and wonderful ways that math structures and shapes our world. In Math With Bad Drawings, Ben Orlin reveals to us what math actually is; its myriad uses, its strange symbols, and the wild leaps of logic and faith that define the usually impenetrable work of the mathematician. Truth and knowledge come in multiple forms: colorful drawings, encouraging jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone. Orlin shows us how to think like a mathematician by teaching us a brand-new game of tic-tac-toe, how to understand an economic crises by rolling a pair of dice, and the mathematical headache that ensues when attempting to build a spherical Death Star. Every discussion in the book is illustrated with Orlin's trademark "bad drawings," which convey his message and insights with perfect pitch and clarity. With 24 chapters covering topics from the electoral college to human genetics to the reasons not to trust statistics, Math with Bad Drawings is a life-changing book for the math-estranged and math-enamored alike.

AN ESSAY ON THE MATHEMATICAL METHODS OF THEORY OF GENERAL RELATIVITY

AN ESSAY ON THE MATHEMATICAL METHODS OF THEORY OF GENERAL RELATIVITY PDF Author: Edoardo Confalonieri
Publisher: Edoardo Confalonieri
ISBN:
Category :
Languages : en
Pages : 2233

Book Description
The basic concepts of a method for a general integral of the Field Equations of the Theory of General Relativity are outlined. An extended and revised version is currently in preparation, and it will be uploaded as soon as ready for publication.