Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks PDF full book. Access full book title Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks by Kristin Herlugson. Download full books in PDF and EPUB format.

Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks

Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks PDF Author: Kristin Herlugson
Publisher:
ISBN:
Category : Computer network architectures
Languages : en
Pages :

Book Description


Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks

Some Graph Theoretic Methods for Distributed Control of Communicating Agent Networks PDF Author: Kristin Herlugson
Publisher:
ISBN:
Category : Computer network architectures
Languages : en
Pages :

Book Description


Graph Theoretic Methods in Multiagent Networks

Graph Theoretic Methods in Multiagent Networks PDF Author: Mehran Mesbahi
Publisher: Princeton University Press
ISBN: 1400835356
Category : Mathematics
Languages : en
Pages : 424

Book Description
This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA

Graph Theoretic Methods in Multiagent Networks

Graph Theoretic Methods in Multiagent Networks PDF Author: Mehran Mesbahi
Publisher: Princeton University Press
ISBN: 0691140618
Category : Computers
Languages : en
Pages : 423

Book Description
An introduction to the analysis & design of dynamic multiagent networks. These have a wide range of applications in science & engineering, including mobile sensor networks, distributed robotics, quantum networks, networked economics, biological synchronization & social networks.

Distributed Control of Robotic Networks

Distributed Control of Robotic Networks PDF Author: Francesco Bullo
Publisher: Princeton University Press
ISBN: 1400831474
Category : Technology & Engineering
Languages : en
Pages : 320

Book Description
This self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms. Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises. Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation

Frequency-Domain Analysis and Design of Distributed Control Systems

Frequency-Domain Analysis and Design of Distributed Control Systems PDF Author: Yu-Ping Tian
Publisher: John Wiley & Sons
ISBN: 0470828234
Category : Science
Languages : en
Pages : 245

Book Description
This book presents a unified frequency-domain method for the analysis of distributed control systems. The following important topics are discussed by using the proposed frequency-domain method: (1) Scalable stability criteria of networks of distributed control systems; (2) Effect of heterogeneous delays on the stability of a network of distributed control system; (3) Stability of Internet congestion control algorithms; and (4) Consensus in multi-agent systems. This book is ideal for graduate students in control, networking and robotics, as well as researchers in the fields of control theory and networking who are interested in learning and applying distributed control algorithms or frequency-domain analysis methods.

Collective Behavior in Complex Networked Systems under Imperfect Communication

Collective Behavior in Complex Networked Systems under Imperfect Communication PDF Author: Jianquan Lu
Publisher: Springer Nature
ISBN: 9811615063
Category : Computers
Languages : en
Pages : 269

Book Description
This book aims to explain how collective behavior is formed via local interactions under imperfect communication in complex networked systems. It also presents some new distributed protocols or algorithms for complex networked systems to comply with bandwidth limitation and tolerate communication delays. This book will be of particular interest to the readers due to the benefits: 1) it studies the effect of time delay and quantization on the collective behavior by non-smooth analytical technique and algebraic graph theory; 2) it introduces the event-based consensus method under delayed information transmission; In the meantime, it presents some novel approaches to handle the communication constraints in networked systems; 3) it gives some synchronization and control strategies for complex networked systems with limited communication abilities. Furthermore, it provides a consensus recovery approach for multi-agent systems with node failure. Also, it presents interesting results about bipartite consensus and fixed-time/finite-time bipartite consensus of networks with cooperative and antagonistic interactions.

Distributed Cooperative Control of Multi-agent Systems

Distributed Cooperative Control of Multi-agent Systems PDF Author: Wenwu Yu
Publisher: John Wiley & Sons
ISBN: 1119246202
Category : Science
Languages : en
Pages : 254

Book Description
A detailed and systematic introduction to the distributed cooperative control of multi-agent systems from a theoretical, network perspective Features detailed analysis and discussions on the distributed cooperative control and dynamics of multi-agent systems Covers comprehensively first order, second order and higher order systems, swarming and flocking behaviors Provides a broad theoretical framework for understanding the fundamentals of distributed cooperative control

Cooperative Control of Nonlinear Networked Systems

Cooperative Control of Nonlinear Networked Systems PDF Author: Yongduan Song
Publisher: Springer
ISBN: 3030049728
Category : Technology & Engineering
Languages : en
Pages : 197

Book Description
Cooperative Control of Nonlinear Networked Systems is concerned with the distributed cooperative control of multiple networked nonlinear systems in the presence of unknown non-parametric uncertainties and non-vanishing disturbances under certain communication conditions. It covers stability analysis tools and distributed control methods for analyzing and synthesizing nonlinear networked systems. The book presents various solutions to cooperative control problems of multiple networked nonlinear systems on graphs. The book includes various examples with segments of MATLAB® codes for readers to verify, validate, and replicate the results. The authors present a series of new control results for nonlinear networked systems subject to both non-parametric and non-vanishing uncertainties, including the cooperative uniformly ultimately bounded (CUUB) result, finite-time stability result, and finite-time cooperative uniformly ultimately bounded (FT-CUUB) result. With some mathematical tools, such as algebraic graph theory and certain aspects of matrix analysis theory introduced by the authors, the readers can obtain a deeper understanding of the roles of matrix operators as mathematical machinery for cooperative control design for multi-agent systems. Cooperative Control of Nonlinear Networked Systems is a valuable source of information for researchers and engineers in cooperative adaptive control, as its technical contents are presented with examples in full analytical and numerical detail, and graphically illustrated for easy-to-understand results. Scientists in research institutes and academics in universities working on nonlinear systems, adaptive control and distributed control will find the book of interest, as it contains multi-disciplinary problems and covers different areas of research.

Cooperative and Graph Signal Processing

Cooperative and Graph Signal Processing PDF Author: Petar Djuric
Publisher: Academic Press
ISBN: 0128136782
Category : Computers
Languages : en
Pages : 868

Book Description
Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. Presents the first book on cooperative signal processing and graph signal processing Provides a range of applications and application areas that are thoroughly covered Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book

Graph Theoretic Approaches for Analyzing Routes, Flows, and Subnetworks in Communication Networks

Graph Theoretic Approaches for Analyzing Routes, Flows, and Subnetworks in Communication Networks PDF Author: Zohre Ranjbar-Mojaveri
Publisher:
ISBN:
Category : Computer networks
Languages : en
Pages :

Book Description
Modeling networks as different graph types and discovering novel route finding strategies, as well as avoiding congestion in dense subnetworks via graph-theoretic approaches, contribute to overall blocking probability reduction in communication networks. We develop methods for modeling congested subnetworks and graph density measures to identify routes that avoid dense subgraphs for local or global congestion avoidance. We thoroughly review various concepts of graph density, as well as associated theorems and algorithms to identify and extract a densest subgraph from an input graph, according to different definitions of graph density. The Disjoint Connecting Paths problem, and its capacitated generalization, called Unsplittable Flow problem, play an important role in practical applications such as communication network design and routing. These tasks are NP-hard in general, but various polynomialtime approximations and efficiently solvable special cases are known. We present a solution that provides a relatively simple, efficient algorithm for the Unsplittable Flow problem in large, general directed graphs, where the task is NP-hard, and is known to remain NP-hard even to approximate up to a large factor. The efficiency of our algorithm is achieved by sacrificing a small part of the solution space. This also represents a novel paradigm for approximation: rather than giving up the search for an exact solution, we restrict the solution space to a subset that is the most important for applications, and excludes only a small part that is marginal in some well-defined sense. Specifically, the sacrificed part only contains scenarios where some edges are very close to saturation. Since nearly saturated links are undesirable in practical applications, therefore, excluding near-saturation is quite reasonable from the practical point of view. Referring the solutions that contain no nearly saturated edges as safe solutions, and call the approach safe approximation we prove that this safe approximation can be carried out efficiently. That is, once we restrict ourselves to safe solutions, but keeping the graph completely general, finding the exact optimum by a randomized polynomial time algorithm is feasible. As a further piece of graph theory based analysis, we study random graphs instances in which the edges are allowed to be dependent. The importance of random graphs in networking is provided by the fact that they are frequently used to model the network topology of radio networks. However, the most studied variant of random graph models, the Erd ̋os-Rényi random graph, is insufficient for this purpose, because of its strong simplifying assumption that the edges are stochastically independent. We generalize this model by allowing edge dependence, in a quite general way. We call our model p-robust random graph. It means that every edge is present at least with a given probability p, regardless of the presence/absence of other edges. This allows significant dependencies, but keeping independent edges as a special case. For our main result, we consider monotone graph properties: properties that are preserved whenever more edges are added. Many important graph properties are monotone. Our main result, which requires a rather sophisticated proof, is that for any monotone graph property, the p-robust random graph has at least as high probability to have the property as an Erd ̋os-Rényi random graph with edge probability p. This provides a useful general tool, as it allows the adaptation of many results from classical Erd ̋os-Rényi random graphs to a non-independent setting, via using them as lower bounds. Finally, to complement the theoretical investigations with a practical approach, we consider a fundamental component for packet traffic filtering in computer networks, called Access Control List (ACL). Packet filtering via ACL controls inbound or outbound packet traffic and provides the ability to manage the network traffic flow through a network element to optimize quality of service (QoS), network security, as well as network performance. In general, filtering packet traffic and applying rules of permit/denial to data packets flowing into network nodes are facilitated by ACL. As an industry use case, we propose a procedure of adding a link load threshold value to the Access Control List rules option, which acts on the basis of a threshold value. This enhanced ACL is helps to avoid congestion in targeted subnetworks via the link load threshold value, which allows to decide that the packet traffic is rerouted by the router to avoid congestion, or packet drop is initiated on the basis of packet priorities. We demonstrate the system operation via numerical simulation.