Author: Srinivasan Gopalakrishnan
Publisher: CRC Press
ISBN: 1000636518
Category : Science
Languages : en
Pages : 385
Book Description
Elastic Wave Propagation in Structures and Materials initiates with a brief introduction to wave propagation, different wave equations, integral transforms including fundamentals of Fourier Transform, Wavelet Transform, Laplace Transform and their numerical implementation. Concept of spectral analysis and procedure to compute the wave parameters, wave propagation in 1-D isotropic waveguides, wave dispersion in 2-D waveguides is explained. Wave propagation in different media such as laminated composites, functionally graded structures, granular soils including non-local elasticity models is addressed. The entire book is written in modular form and analysis is performed in frequency domain. Features: Brings out idea of wave dispersion and its utility in the dynamic responses. Introduces concepts as Negative Group Speeds, Einstein’s Causality and escape frequencies using solid mathematical framework. Discusses the propagation of waves in materials such as laminated composites and functionally graded materials. Proposes spectral finite element as analysis tool for wave propagation. Each concept/chapter supported by homework problems and MATLAB/FORTRAN codes. This book aims at Senior Undergraduates and Advanced Graduates in all streams of engineering especially Mechanical and Aerospace Engineering.
Elastic Wave Propagation in Structures and Materials
Author: Srinivasan Gopalakrishnan
Publisher: CRC Press
ISBN: 1000636518
Category : Science
Languages : en
Pages : 385
Book Description
Elastic Wave Propagation in Structures and Materials initiates with a brief introduction to wave propagation, different wave equations, integral transforms including fundamentals of Fourier Transform, Wavelet Transform, Laplace Transform and their numerical implementation. Concept of spectral analysis and procedure to compute the wave parameters, wave propagation in 1-D isotropic waveguides, wave dispersion in 2-D waveguides is explained. Wave propagation in different media such as laminated composites, functionally graded structures, granular soils including non-local elasticity models is addressed. The entire book is written in modular form and analysis is performed in frequency domain. Features: Brings out idea of wave dispersion and its utility in the dynamic responses. Introduces concepts as Negative Group Speeds, Einstein’s Causality and escape frequencies using solid mathematical framework. Discusses the propagation of waves in materials such as laminated composites and functionally graded materials. Proposes spectral finite element as analysis tool for wave propagation. Each concept/chapter supported by homework problems and MATLAB/FORTRAN codes. This book aims at Senior Undergraduates and Advanced Graduates in all streams of engineering especially Mechanical and Aerospace Engineering.
Publisher: CRC Press
ISBN: 1000636518
Category : Science
Languages : en
Pages : 385
Book Description
Elastic Wave Propagation in Structures and Materials initiates with a brief introduction to wave propagation, different wave equations, integral transforms including fundamentals of Fourier Transform, Wavelet Transform, Laplace Transform and their numerical implementation. Concept of spectral analysis and procedure to compute the wave parameters, wave propagation in 1-D isotropic waveguides, wave dispersion in 2-D waveguides is explained. Wave propagation in different media such as laminated composites, functionally graded structures, granular soils including non-local elasticity models is addressed. The entire book is written in modular form and analysis is performed in frequency domain. Features: Brings out idea of wave dispersion and its utility in the dynamic responses. Introduces concepts as Negative Group Speeds, Einstein’s Causality and escape frequencies using solid mathematical framework. Discusses the propagation of waves in materials such as laminated composites and functionally graded materials. Proposes spectral finite element as analysis tool for wave propagation. Each concept/chapter supported by homework problems and MATLAB/FORTRAN codes. This book aims at Senior Undergraduates and Advanced Graduates in all streams of engineering especially Mechanical and Aerospace Engineering.
Waves in Elastic and Viscoelastic Solids
Author: Clifford Truesdell
Publisher:
ISBN:
Category : Elastic solids
Languages : en
Pages : 354
Book Description
Publisher:
ISBN:
Category : Elastic solids
Languages : en
Pages : 354
Book Description
Advances in Continuum Mechanics and Thermodynamics of Material Behavior
Author: Donald E. Carlson
Publisher: Springer Science & Business Media
ISBN: 9401007284
Category : Science
Languages : en
Pages : 431
Book Description
The papers included in this volume were presented at the Symposium on Advances in the Continuum Mechanics and Thermodynamics of Material Behavior, held as part of the 1999 Joint ASME Applied Mechanics and Materials Summer Conference at Virginia Tech on June 27-30, 1999. The Symposium was held in honor of Professor Roger L. Fosdick on his 60th birthday. The papers are written by prominent researchers in the fields of mechanics, thermodynamics, materials modeling, and applied mathematics. They address open questions and present the latest development in these and related areas. This volume is a valuable reference for researchers and graduate students in universities and research laboratories.
Publisher: Springer Science & Business Media
ISBN: 9401007284
Category : Science
Languages : en
Pages : 431
Book Description
The papers included in this volume were presented at the Symposium on Advances in the Continuum Mechanics and Thermodynamics of Material Behavior, held as part of the 1999 Joint ASME Applied Mechanics and Materials Summer Conference at Virginia Tech on June 27-30, 1999. The Symposium was held in honor of Professor Roger L. Fosdick on his 60th birthday. The papers are written by prominent researchers in the fields of mechanics, thermodynamics, materials modeling, and applied mathematics. They address open questions and present the latest development in these and related areas. This volume is a valuable reference for researchers and graduate students in universities and research laboratories.
The Shock and Vibration Digest
Applied Mechanics Reviews
Mechanics of Solids
Author: C. Truesdell
Publisher: Springer
ISBN: 9783540131632
Category : Science
Languages : en
Pages : 354
Book Description
Reissue of Encyclopedia of Physics / Handbuch der Physik, Volume VIa The mechanical response of solids was first reduced to an organized science of fairly general scope in the nineteenth century. The theory of small elastic deformations is in the main the creation of CAUCHY, who, correcting and simplifying the work of N AVIER and POISSON, through an astounding application of conjoined scholarship, originality, and labor greatly extended in breadth the shallowest aspects of the treatments of par ticular kinds of bodies by GALILEO, LEIBNIZ, JAMES BERNOULLI, PARENT, DANIEL BER NOULLI, EULER, and COULOMB. Linear elasticity became a branch of mathematics, culti vated wherever there were mathematicians. The magisterial treatise of LOVE in its second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary of the classical theory. It is one of the great "gaslight works" that in BOCHNER'S words! "either do not have any adequate successor[s] '" or, at least, refuse to be super seded . . . ; and so they have to be reprinted, in ever increasing numbers, for active research and reference", as long as State and Society shall permit men to learn mathe matics by, for, and of men's minds. Abundant experimentation on solids was done during the same century. Usually the materials arising in nature, with which experiment most justly concerns itself, do not stoop easily to the limitations classical elasticity posits.
Publisher: Springer
ISBN: 9783540131632
Category : Science
Languages : en
Pages : 354
Book Description
Reissue of Encyclopedia of Physics / Handbuch der Physik, Volume VIa The mechanical response of solids was first reduced to an organized science of fairly general scope in the nineteenth century. The theory of small elastic deformations is in the main the creation of CAUCHY, who, correcting and simplifying the work of N AVIER and POISSON, through an astounding application of conjoined scholarship, originality, and labor greatly extended in breadth the shallowest aspects of the treatments of par ticular kinds of bodies by GALILEO, LEIBNIZ, JAMES BERNOULLI, PARENT, DANIEL BER NOULLI, EULER, and COULOMB. Linear elasticity became a branch of mathematics, culti vated wherever there were mathematicians. The magisterial treatise of LOVE in its second edition, 1906 - clear, compact, exhaustive, and learned - stands as the summary of the classical theory. It is one of the great "gaslight works" that in BOCHNER'S words! "either do not have any adequate successor[s] '" or, at least, refuse to be super seded . . . ; and so they have to be reprinted, in ever increasing numbers, for active research and reference", as long as State and Society shall permit men to learn mathe matics by, for, and of men's minds. Abundant experimentation on solids was done during the same century. Usually the materials arising in nature, with which experiment most justly concerns itself, do not stoop easily to the limitations classical elasticity posits.
Wave Fields in Real Media
Author: José M. Carcione
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
Publisher: Elsevier
ISBN: 0081000030
Category : Science
Languages : en
Pages : 690
Book Description
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil
An Introduction to Geophysical Exploration
Author: Philip Kearey
Publisher: John Wiley & Sons
ISBN: 1118698932
Category : Science
Languages : en
Pages : 292
Book Description
This new edition of the well-established Kearey and Brooks text is fully updated to reflect the important developments in geophysical methods since the production of the previous edition. The broad scope of previous editions is maintained, with even greater clarity of explanations from the revised text and extensively revised figures. Each of the major geophysical methods is treated systematically developing the theory behind the method and detailing the instrumentation, field data acquisition techniques, data processing and interpretation methods. The practical application of each method to such diverse exploration applications as petroleum, groundwater, engineering, environmental and forensic is shown by case histories. The mathematics required in order to understand the text is purposely kept to a minimum, so the book is suitable for courses taken in geophysics by all undergraduate students. It will also be of use to postgraduate students who might wish to include geophysics in their studies and to all professional geologists who wish to discover the breadth of the subject in connection with their own work.
Publisher: John Wiley & Sons
ISBN: 1118698932
Category : Science
Languages : en
Pages : 292
Book Description
This new edition of the well-established Kearey and Brooks text is fully updated to reflect the important developments in geophysical methods since the production of the previous edition. The broad scope of previous editions is maintained, with even greater clarity of explanations from the revised text and extensively revised figures. Each of the major geophysical methods is treated systematically developing the theory behind the method and detailing the instrumentation, field data acquisition techniques, data processing and interpretation methods. The practical application of each method to such diverse exploration applications as petroleum, groundwater, engineering, environmental and forensic is shown by case histories. The mathematics required in order to understand the text is purposely kept to a minimum, so the book is suitable for courses taken in geophysics by all undergraduate students. It will also be of use to postgraduate students who might wish to include geophysics in their studies and to all professional geologists who wish to discover the breadth of the subject in connection with their own work.
Advances in Mechanical Problems of Functionally Graded Materials and Structures
Author: Indra Vir Singh
Publisher: MDPI
ISBN: 3039216589
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.
Publisher: MDPI
ISBN: 3039216589
Category : Technology & Engineering
Languages : en
Pages : 262
Book Description
The book deals with novel aspects and perspectives in functionally graded materials (FGMs), which are advanced engineering materials designed for a specific performance or function with spatial gradation in structure and/or composition. The contributions mainly focus on numerical simulations of mechanical properties and the behavior of FGMs and FGM structures. Several advancements in numerical simulations that are particularly useful for investigations on FGMs have been proposed and demonstrated in this Special Issue. Such proposed approaches provide incisive methods to explore and predict the mechanical and structural characteristics of FGMs subjected to thermoelectromechanical loadings under various boundary and environmental conditions. The contributions have resulted in enhanced activity regarding the prediction of FGM properties and global structural responses, which are of great importance when considering the potential applications of FGM structures. Furthermore, the presented scientific scope is, in some way, an answer to the continuous demand for FGM structures, and opens new perspectives for their practical use.
Wave Propagation in Materials and Structures
Author: Srinivasan Gopalakrishnan
Publisher: CRC Press
ISBN: 1315354896
Category : Science
Languages : en
Pages : 861
Book Description
This book focuses on basic and advanced concepts of wave propagation in diverse material systems and structures. Topics are organized in increasing order of complexity for better appreciation of the subject. Additionally, the book provides basic guidelines to design many of the futuristic materials and devices for varied applications. The material in the book also can be used for designing safer and more lightweight structures such as aircraft, bridges, and mechanical and structural components. The main objective of this book is to bring both the introductory and the advanced topics of wave propagation into one text. Such a text is necessary considering the multi-disciplinary nature of the subject. This book is written in a step-by step modular approach wherein the chapters are organized so that the complexity in the subject is slowly introduced with increasing chapter numbers. Text starts by introducing all the fundamental aspects of wave propagations and then moves on to advanced topics on the subject. Every chapter is provided with a number of numerical examples of increasing complexity to bring out the concepts clearly The solution of wave propagation is computationally very intensive and hence two different approaches, namely, the Finite Element method and the Spectral Finite method are introduced and have a strong focus on wave propagation. The book is supplemented by an exhaustive list of references at the end of the book for the benefit of readers.
Publisher: CRC Press
ISBN: 1315354896
Category : Science
Languages : en
Pages : 861
Book Description
This book focuses on basic and advanced concepts of wave propagation in diverse material systems and structures. Topics are organized in increasing order of complexity for better appreciation of the subject. Additionally, the book provides basic guidelines to design many of the futuristic materials and devices for varied applications. The material in the book also can be used for designing safer and more lightweight structures such as aircraft, bridges, and mechanical and structural components. The main objective of this book is to bring both the introductory and the advanced topics of wave propagation into one text. Such a text is necessary considering the multi-disciplinary nature of the subject. This book is written in a step-by step modular approach wherein the chapters are organized so that the complexity in the subject is slowly introduced with increasing chapter numbers. Text starts by introducing all the fundamental aspects of wave propagations and then moves on to advanced topics on the subject. Every chapter is provided with a number of numerical examples of increasing complexity to bring out the concepts clearly The solution of wave propagation is computationally very intensive and hence two different approaches, namely, the Finite Element method and the Spectral Finite method are introduced and have a strong focus on wave propagation. The book is supplemented by an exhaustive list of references at the end of the book for the benefit of readers.