Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Solving Systems of Polynomial Equations
Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Numerically Solving Polynomial Systems with Bertini
Author: Daniel J. Bates
Publisher: SIAM
ISBN: 1611972698
Category : Science
Languages : en
Pages : 372
Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Publisher: SIAM
ISBN: 1611972698
Category : Science
Languages : en
Pages : 372
Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Solving Polynomial Equations
Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Intermediate Algebra 2e
Author: Lynn Marecek
Publisher:
ISBN: 9781951693848
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781951693848
Category :
Languages : en
Pages :
Book Description
Solving Polynomial Equation Systems
Author: Teo Mora
Publisher:
ISBN: 9780511178887
Category : Equations
Languages : en
Pages : 439
Book Description
Mora covers the classical theory of finding roots of a univariate polynomial, emphasising computational aspects. He shows that solving a polynomial equation really means finding algorithms that help one manipulate roots rather than simply computing them; to that end he also surveys algorithms for factorizing univariate polynomials.
Publisher:
ISBN: 9780511178887
Category : Equations
Languages : en
Pages : 439
Book Description
Mora covers the classical theory of finding roots of a univariate polynomial, emphasising computational aspects. He shows that solving a polynomial equation really means finding algorithms that help one manipulate roots rather than simply computing them; to that end he also surveys algorithms for factorizing univariate polynomials.
The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science
Author: Andrew J Sommese
Publisher: World Scientific
ISBN: 9814480886
Category : Mathematics
Languages : en
Pages : 425
Book Description
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.
Publisher: World Scientific
ISBN: 9814480886
Category : Mathematics
Languages : en
Pages : 425
Book Description
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.
Solving Polynomial Equation Systems I
Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 9780521811545
Category : Mathematics
Languages : en
Pages : 452
Book Description
Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.
Publisher: Cambridge University Press
ISBN: 9780521811545
Category : Mathematics
Languages : en
Pages : 452
Book Description
Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.
Applications of Computational Algebraic Geometry
Author: David A. Cox
Publisher: American Mathematical Soc.
ISBN: 0821807501
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of resultants, computational algebraic geometry has grown rapidly in importance. The fact that "crunching equations" is now as easy as "crunching numbers" has had a profound impact in recent years. At the same time, the mathematics used in computational algebraic geometry is unusually elegant and accessible, which makes the subject easy to learn and easy to apply. This book begins with an introduction to Gröbner bases and resultants, then discusses some of the more recent methods for solving systems of polynomial equations. A sampler of possible applications follows, including computer-aided geometric design, complex information systems, integer programming, and algebraic coding theory. The lectures in this book assume no previous acquaintance with the material.
Publisher: American Mathematical Soc.
ISBN: 0821807501
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book introduces readers to key ideas and applications of computational algebraic geometry. Beginning with the discovery of Gröbner bases and fueled by the advent of modern computers and the rediscovery of resultants, computational algebraic geometry has grown rapidly in importance. The fact that "crunching equations" is now as easy as "crunching numbers" has had a profound impact in recent years. At the same time, the mathematics used in computational algebraic geometry is unusually elegant and accessible, which makes the subject easy to learn and easy to apply. This book begins with an introduction to Gröbner bases and resultants, then discusses some of the more recent methods for solving systems of polynomial equations. A sampler of possible applications follows, including computer-aided geometric design, complex information systems, integer programming, and algebraic coding theory. The lectures in this book assume no previous acquaintance with the material.
Solving Polynomial Equation Systems
Author:
Publisher: Cambridge University Press
ISBN: 0521811554
Category :
Languages : en
Pages : 295
Book Description
Publisher: Cambridge University Press
ISBN: 0521811554
Category :
Languages : en
Pages : 295
Book Description
Solving Transcendental Equations
Author: John P. Boyd
Publisher: SIAM
ISBN: 161197352X
Category : Mathematics
Languages : en
Pages : 446
Book Description
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.
Publisher: SIAM
ISBN: 161197352X
Category : Mathematics
Languages : en
Pages : 446
Book Description
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.