Solving Ordinary Differential Equations II PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Solving Ordinary Differential Equations II PDF full book. Access full book title Solving Ordinary Differential Equations II by Ernst Hairer. Download full books in PDF and EPUB format.

Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 9783540604525
Category : Mathematics
Languages : en
Pages : 662

Book Description
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY

Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 9783540604525
Category : Mathematics
Languages : en
Pages : 662

Book Description
The subject of this book is the solution of stiff differential equations and of differential-algebraic systems. This second edition contains new material including new numerical tests, recent progress in numerical differential-algebraic equations, and improved FORTRAN codes. From the reviews: "A superb book...Throughout, illuminating graphics, sketches and quotes from papers of researchers in the field add an element of easy informality and motivate the text." --MATHEMATICS TODAY

Solving Ordinary Differential Equations II

Solving Ordinary Differential Equations II PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662099470
Category : Mathematics
Languages : en
Pages : 615

Book Description
"Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.

Solving Ordinary Differential Equations I

Solving Ordinary Differential Equations I PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 354078862X
Category : Mathematics
Languages : en
Pages : 541

Book Description
This book deals with methods for solving nonstiff ordinary differential equations. The first chapter describes the historical development of the classical theory, and the second chapter includes a modern treatment of Runge-Kutta and extrapolation methods. Chapter three begins with the classical theory of multistep methods, and concludes with the theory of general linear methods. The reader will benefit from many illustrations, a historical and didactic approach, and computer programs which help him/her learn to solve all kinds of ordinary differential equations. This new edition has been rewritten and new material has been included.

Handbook of Exact Solutions for Ordinary Differential Equations

Handbook of Exact Solutions for Ordinary Differential Equations PDF Author: Valentin F. Zaitsev
Publisher: CRC Press
ISBN: 1420035339
Category : Mathematics
Languages : en
Pages : 815

Book Description
Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handboo

Ordinary Differential Equations and Their Solutions

Ordinary Differential Equations and Their Solutions PDF Author: George Moseley Murphy
Publisher: Courier Corporation
ISBN: 0486485919
Category : Mathematics
Languages : en
Pages : 466

Book Description
This treatment presents most of the methods for solving ordinary differential equations and systematic arrangements of more than 2,000 equations and their solutions. The material is organized so that standard equations can be easily found. Plus, the substantial number and variety of equations promises an exact equation or a sufficiently similar one. 1960 edition.

Ordinary Differential Equations

Ordinary Differential Equations PDF Author: Morris Tenenbaum
Publisher: Courier Corporation
ISBN: 0486649407
Category : Mathematics
Languages : en
Pages : 852

Book Description
Skillfully organized introductory text examines origin of differential equations, then defines basic terms and outlines the general solution of a differential equation. Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: J. C. Butcher
Publisher: John Wiley & Sons
ISBN: 0470868260
Category : Mathematics
Languages : en
Pages : 442

Book Description
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.

Programming for Computations - Python

Programming for Computations - Python PDF Author: Svein Linge
Publisher: Springer
ISBN: 3319324284
Category : Computers
Languages : en
Pages : 244

Book Description
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: L.F. Shampine
Publisher: Routledge
ISBN: 1351427555
Category : Mathematics
Languages : en
Pages : 632

Book Description
This new work is an introduction to the numerical solution of the initial value problem for a system of ordinary differential equations. The first three chapters are general in nature, and chapters 4 through 8 derive the basic numerical methods, prove their convergence, study their stability and consider how to implement them effectively. The book focuses on the most important methods in practice and develops them fully, uses examples throughout, and emphasizes practical problem-solving methods.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Category : Mathematics
Languages : en
Pages : 620

Book Description
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.