Solid Solution Strengthening Mechanisms in High Entropy Alloys

Solid Solution Strengthening Mechanisms in High Entropy Alloys PDF Author: Francisco Gil Coury
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 140

Book Description


Strengthening Mechanisms in Crystal Plasticity

Strengthening Mechanisms in Crystal Plasticity PDF Author: Ali Argon
Publisher: Oxford University Press on Demand
ISBN: 0198516002
Category : Science
Languages : en
Pages : 425

Book Description
Technologically important metals and alloys have been strengthened throughout history by empirical means. The scientific bases of the central mechanisms of such forms of strengthening, developed over the past several decades are presented here through mechanistic models and associated experimental results.

Physics of Solid Solution Strengthening

Physics of Solid Solution Strengthening PDF Author: E. Collings
Publisher: Springer Science & Business Media
ISBN: 1468407570
Category : Technology & Engineering
Languages : en
Pages : 310

Book Description
This book is the proceedings of a Symposium entitled "The Physics of Solid-Solution Strengthening in Alloys" which was held at McCormick Place, Chicago, on October 2, 1973, in association with a joint meeting of the American Society for Metals (ASM) and The Metallurgical Society (TMS) of the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME). The symposium, which was initiated and organized by the editors of this volume, was sponsored by the Committee on Alloy Phases, Institute of Metals Division, TMS, AIME, and the Flow and Fracture Section of the Materials Science Division, ASM. The discipline of Alloy Design has been very active in recent years, during which considerable stress has been placed on the roles of crystallography and microstructure in the rationalization and prediction of properties. Underestimated as a component of alloy design, however, has been the importance of physical property studies, even though physical property measurements have tradi tionally been employed to augment direct or x-ray observations in the determination of phase equilibrium (and, indeed, metastable equilibrium) boundaries.

Solid Solution Strengthening in High-Entropy Alloys

Solid Solution Strengthening in High-Entropy Alloys PDF Author: Ibrahim Ondicho
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Book Description
This book chapter discusses solid solution strengthening (SSS) as one of the main hardening mechanisms in high-entropy alloys (HEAs) that form basis as one of its core effects (lattice distortion). The various techniques used to quantify SSS and the role of different substitutional and interstitial elements/atoms in improving the strength of HEAs are outlined in detail. This review provides a good assessment on ways to enhance the mechanical properties of HEAs to suit the extreme demands of modern engineering applications. Based on theoretical modeling and experimental validation, Al and Nb provide superior substitutional SSS in face-centered cubic and body-centered cubic crystal structures, while carbon has a 50% more effect on improving the mechanical properties of HEAs than in stainless and twinning-induced plasticity steels. Moreover, a detailed description of the application of machine learning in design of HEAs shows that trial and error can eliminated in identifying HEAs with exceptional yield strength. The atomic size difference should be used to evaluate the lattice distortion effect.

Thermally Activated Mechanisms in Crystal Plasticity

Thermally Activated Mechanisms in Crystal Plasticity PDF Author: D. Caillard
Publisher: Elsevier
ISBN: 0080542786
Category : Technology & Engineering
Languages : en
Pages : 453

Book Description
KEY FEATURES: A unified, fundamental and quantitative resource. The result of 5 years of investigation from researchers around the world New data from a range of new techniques, including synchrotron radiation X-ray topography provide safer and surer methods of identifying deformation mechanisms Informing the future direction of research in intermediate and high temperature processes by providing original treatment of dislocation climb DESCRIPTION: Thermally Activated Mechanisms in Crystal Plasticity is a unified, quantitative and fundamental resource for material scientists investigating the strength of metallic materials of various structures at extreme temperatures. Crystal plasticity is usually controlled by a limited number of elementary dislocation mechanisms, even in complex structures. Those which determine dislocation mobility and how it changes under the influence of stress and temperature are of key importance for understanding and predicting the strength of materials. The authors describe in a consistent way a variety of thermally activated microscopic mechanisms of dislocation mobility in a range of crystals. The principles of the mechanisms and equations of dislocation motion are revisited and new ones are proposed. These describe mostly friction forces on dislocations such as the lattice resistance to glide or those due to sessile cores, as well as dislocation cross-slip and climb. They are critically assessed by comparison with the best available experimental results of microstructural characterization, in situ straining experiments under an electron or a synchrotron beam, as well as accurate transient mechanical tests such as stress relaxation experiments. Some recent attempts at atomistic modeling of dislocation cores under stress and temperature are also considered since they offer a complementary description of core transformations and associated energy barriers. In addition to offering guidance and assistance for further experimentation, the book indicates new ways to extend the body of data in particular areas such as lattice resistance to glide.

High-Entropy Materials

High-Entropy Materials PDF Author: Yong Zhang
Publisher: Springer
ISBN: 9811385262
Category : Technology & Engineering
Languages : en
Pages : 152

Book Description
This book draws on the latest research to discuss the history and development of high-entropy alloys and ceramics in bulk, film, and fiber form. High-entropy materials have recently been developed using the entropy of mixing and entropy of configuration of materials, and have proven to exhibit unique properties superior to those of conventional materials. The field of high-entropy alloys was born in 2004, and has since been developed for both scientific and engineering applications. Although there is extensive literature, this field is rapidly transforming. This book highlights the cutting edge of high-entropy materials, including their fundamentals and applications. Above all, it reflects two major milestones in their development: the equi-atomic ratio single-phase high-entropy alloys; and the non-equi-atomic ratio dual-phase high-entropy alloys.

High-Entropy Alloys

High-Entropy Alloys PDF Author: Michael C. Gao
Publisher: Springer
ISBN: 3319270133
Category : Technology & Engineering
Languages : en
Pages : 524

Book Description
This book provides a systematic and comprehensive description of high-entropy alloys (HEAs). The authors summarize key properties of HEAs from the perspective of both fundamental understanding and applications, which are supported by in-depth analyses. The book also contains computational modeling in tackling HEAs, which help elucidate the formation mechanisms and properties of HEAs from various length and time scales.

Computer Simulations of Dislocations

Computer Simulations of Dislocations PDF Author: Vasily Bulatov
Publisher: Oxford University Press
ISBN: 0198526148
Category : Computers
Languages : en
Pages : 301

Book Description
The book presents a variety of methods for computer simulations of crystal defects in the form of "numerical recipes", complete with computer codes and analysis tools. By working through numerous case studies and problems, this book provides a useful starter kit for further method development in the computational materials sciences.

Order and Phase Stability in Alloys

Order and Phase Stability in Alloys PDF Author: F. Ducastelle
Publisher: North Holland
ISBN:
Category : Science
Languages : en
Pages : 536

Book Description
Hardbound. The main purpose of this book is to describe the modern tools of solid state physics (in particular, electronic structure calculations and statistical thermodynamics) that enable us to understand ordering effects in alloys and to determine phase diagrams. This approach is used more to throw light on the most important physical mechanisms rather than to be able to make accurate predictions suitable for particular applications. On the other hand, more phenomenological, practically oriented approaches can expand the scope of these new theoretical insights. A second purpose of the book is to show that materials science can provide wonderful and too often ignored examples to test and discuss the most fundamental physical theories. For example, many real alloys on a face centered cubic lattice are marvellous examples of the Ising model on this lattice with many different ordered structures, commensurate or not.The text is therefore defi

Complex Concentrated Alloys (CCAs)

Complex Concentrated Alloys (CCAs) PDF Author: Sundeep Mukherjee
Publisher: MDPI
ISBN: 3039434748
Category : Technology & Engineering
Languages : en
Pages : 278

Book Description
This book is a collection of several unique articles on the current state of research on complex concentrated alloys, as well as their compelling future opportunities in wide ranging applications. Complex concentrated alloys consist of multiple principal elements and represent a new paradigm in structural alloy design. They show a range of exceptional properties that are unachievable in conventional alloys, including high strength–ductility combination, resistance to oxidation, corrosion/wear resistance, and excellent high-temperature properties. The research articles, reviews, and perspectives are intended to provide a wholistic view of this multidisciplinary subject of interest to scientists and engineers.