Author: S. M. Sinha
Publisher: Elsevier
ISBN: 0080535933
Category : Mathematics
Languages : en
Pages : 589
Book Description
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference
Mathematical Programming
Author: S. M. Sinha
Publisher: Elsevier
ISBN: 0080535933
Category : Mathematics
Languages : en
Pages : 589
Book Description
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference
Publisher: Elsevier
ISBN: 0080535933
Category : Mathematics
Languages : en
Pages : 589
Book Description
Mathematical Programming, a branch of Operations Research, is perhaps the most efficient technique in making optimal decisions. It has a very wide application in the analysis of management problems, in business and industry, in economic studies, in military problems and in many other fields of our present day activities. In this keen competetive world, the problems are getting more and more complicated ahnd efforts are being made to deal with these challenging problems. This book presents from the origin to the recent developments in mathematical programming. The book has wide coverage and is self-contained. It is suitable both as a text and as a reference.* A wide ranging all encompasing overview of mathematical programming from its origins to recent developments* A result of over thirty years of teaching experience in this feild* A self-contained guide suitable both as a text and as a reference
The Colorado Mathematical Olympiad: The Third Decade and Further Explorations
Author: Alexander Soifer
Publisher: Springer
ISBN: 3319528610
Category : Mathematics
Languages : en
Pages : 290
Book Description
Now in its third decade, the Colorado Mathematical Olympiad (CMO), founded by the author, has become an annual state-wide competition, hosting many hundreds of middle and high school contestants each year. This book presents a year-by-year history of the CMO from 2004–2013 with all the problems from the competitions and their solutions. Additionally, the book includes 10 further explorations, bridges from solved Olympiad problems to ‘real’ mathematics, bringing young readers to the forefront of various fields of mathematics. This book contains more than just problems, solutions, and event statistics — it tells a compelling story involving the lives of those who have been part of the Olympiad, their reminiscences of the past and successes of the present. I am almost speechless facing the ingenuity and inventiveness demonstrated in the problems proposed in the third decade of these Olympics. However, equally impressive is the drive and persistence of the originator and living soul of them. It is hard for me to imagine the enthusiasm and commitment needed to work singlehandedly on such an endeavor over several decades. —Branko Grünbaum, University of Washingtonp/ppiAfter decades of hunting for Olympiad problems, and struggling to create Olympiad problems, he has become an extraordinary connoisseur and creator of Olympiad problems. The Olympiad problems were very good, from the beginning, but in the third decade the problems have become extraordinarily good. Every brace of 5 problems is a work of art. The harder individual problems range in quality from brilliant to work-of-genius... The same goes for the “Further Explorations” part of the book. Great mathematics and mathematical questions are immersed in a sauce of fascinating anecdote and reminiscence. If you could have only one book to enjoy while stranded on a desert island, this would be a good choice. /ii/i/psup/supp/ppiLike Gauss, Alexander Soifer would not hesitate to inject Eureka! at the right moment. Like van der Waerden, he can transform a dispassionate exercise in logic into a compelling account of sudden insights and ultimate triumph./ii/i/pp— Cecil Rousseau Chair, USA Mathematical Olympiad Committee/ppiA delightful feature of the book is that in the second part more related problems are discussed. Some of them are still unsolved./ii/i/pp—Paul Erdős/ppiThe book is a gold mine of brilliant reasoning with special emphasis on the power and beauty of coloring proofs. Strongly recommended to both serious and recreational mathematicians on all levels of expertise./i/p —Martin Gardner
Publisher: Springer
ISBN: 3319528610
Category : Mathematics
Languages : en
Pages : 290
Book Description
Now in its third decade, the Colorado Mathematical Olympiad (CMO), founded by the author, has become an annual state-wide competition, hosting many hundreds of middle and high school contestants each year. This book presents a year-by-year history of the CMO from 2004–2013 with all the problems from the competitions and their solutions. Additionally, the book includes 10 further explorations, bridges from solved Olympiad problems to ‘real’ mathematics, bringing young readers to the forefront of various fields of mathematics. This book contains more than just problems, solutions, and event statistics — it tells a compelling story involving the lives of those who have been part of the Olympiad, their reminiscences of the past and successes of the present. I am almost speechless facing the ingenuity and inventiveness demonstrated in the problems proposed in the third decade of these Olympics. However, equally impressive is the drive and persistence of the originator and living soul of them. It is hard for me to imagine the enthusiasm and commitment needed to work singlehandedly on such an endeavor over several decades. —Branko Grünbaum, University of Washingtonp/ppiAfter decades of hunting for Olympiad problems, and struggling to create Olympiad problems, he has become an extraordinary connoisseur and creator of Olympiad problems. The Olympiad problems were very good, from the beginning, but in the third decade the problems have become extraordinarily good. Every brace of 5 problems is a work of art. The harder individual problems range in quality from brilliant to work-of-genius... The same goes for the “Further Explorations” part of the book. Great mathematics and mathematical questions are immersed in a sauce of fascinating anecdote and reminiscence. If you could have only one book to enjoy while stranded on a desert island, this would be a good choice. /ii/i/psup/supp/ppiLike Gauss, Alexander Soifer would not hesitate to inject Eureka! at the right moment. Like van der Waerden, he can transform a dispassionate exercise in logic into a compelling account of sudden insights and ultimate triumph./ii/i/pp— Cecil Rousseau Chair, USA Mathematical Olympiad Committee/ppiA delightful feature of the book is that in the second part more related problems are discussed. Some of them are still unsolved./ii/i/pp—Paul Erdős/ppiThe book is a gold mine of brilliant reasoning with special emphasis on the power and beauty of coloring proofs. Strongly recommended to both serious and recreational mathematicians on all levels of expertise./i/p —Martin Gardner
Mathematical Programming
Author: T. C. Hu
Publisher: Academic Press
ISBN: 1483260798
Category : Mathematics
Languages : en
Pages : 308
Book Description
Mathematical Programming provides information pertinent to the developments in mathematical programming. This book covers a variety of topics, including integer programming, dynamic programming, game theory, nonlinear programming, and combinatorial equivalence. Organized into nine chapters, this book begins with an overview of optimization of very large-scale planning problems that can be achieved on significant problems. This text then introduces non-stationary policies and determines certain operating characteristics of the optimal policy for a very long planning horizon. Other chapters consider the perfect graph theorem by defining some well-known integer-valued functions of an arbitrary graph. This book discusses as well integer programming that deals with the class of mathematical programming problems in which some or all of the variables are required to be integers. The final chapter deals with the basic theorem of game theory. This book is a valuable resource for readers who are interested in mathematical programming. Mathematicians will also find this book useful.
Publisher: Academic Press
ISBN: 1483260798
Category : Mathematics
Languages : en
Pages : 308
Book Description
Mathematical Programming provides information pertinent to the developments in mathematical programming. This book covers a variety of topics, including integer programming, dynamic programming, game theory, nonlinear programming, and combinatorial equivalence. Organized into nine chapters, this book begins with an overview of optimization of very large-scale planning problems that can be achieved on significant problems. This text then introduces non-stationary policies and determines certain operating characteristics of the optimal policy for a very long planning horizon. Other chapters consider the perfect graph theorem by defining some well-known integer-valued functions of an arbitrary graph. This book discusses as well integer programming that deals with the class of mathematical programming problems in which some or all of the variables are required to be integers. The final chapter deals with the basic theorem of game theory. This book is a valuable resource for readers who are interested in mathematical programming. Mathematicians will also find this book useful.
Proceedings of the Princeton Symposium on Mathematical Programming
Author: Harold William Kuhn
Publisher: Princeton University Press
ISBN: 1400869935
Category : Mathematics
Languages : en
Pages : 627
Book Description
This volume contains thirty-three selected general research papers devoted to the theory and application of the mathematics of constrained optimization, including linear programming and its extensions to convex programming, general nonlinear programming, integer programming, and programming under uncertainty. Originally published in 1971. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400869935
Category : Mathematics
Languages : en
Pages : 627
Book Description
This volume contains thirty-three selected general research papers devoted to the theory and application of the mathematics of constrained optimization, including linear programming and its extensions to convex programming, general nonlinear programming, integer programming, and programming under uncertainty. Originally published in 1971. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Mathematical Software – ICMS 2020
Author: Anna Maria Bigatti
Publisher: Springer Nature
ISBN: 3030522008
Category : Computers
Languages : en
Pages : 491
Book Description
This book constitutes the proceedings of the 7th International Conference on Mathematical Software, ICMS 2020, held in Braunschweig, Germany, in July 2020. The 48 papers included in this volume were carefully reviewed and selected from 58 submissions. The program of the 2020 meeting consisted of 20 topical sessions, each of which providing an overview of the challenges, achievements and progress in a environment of mathematical software research, development and use.
Publisher: Springer Nature
ISBN: 3030522008
Category : Computers
Languages : en
Pages : 491
Book Description
This book constitutes the proceedings of the 7th International Conference on Mathematical Software, ICMS 2020, held in Braunschweig, Germany, in July 2020. The 48 papers included in this volume were carefully reviewed and selected from 58 submissions. The program of the 2020 meeting consisted of 20 topical sessions, each of which providing an overview of the challenges, achievements and progress in a environment of mathematical software research, development and use.
Studies on Mathematical Programming
Author: András Prékopa
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 208
Book Description
Mathematical Programming
Author: Michel Minoux
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 526
Book Description
This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 526
Book Description
This comprehensive work covers the whole field of mathematical programming, including linear programming, unconstrained and constrained nonlinear programming, nondifferentiable (or nonsmooth) optimization, integer programming, large scale systems optimization, dynamic programming, and optimization in infinite dimensions. Special emphasis is placed on unifying concepts such as point-to-set maps, saddle points and perturbations functions, duality theory and its extensions.
Mathematical Software -- ICMS 2014
Author: Hoon Hong
Publisher: Springer
ISBN: 3662441993
Category : Computers
Languages : en
Pages : 762
Book Description
This book constitutes the proceedings of the 4th International Conference on Mathematical Software, ICMS 2014, held in Seoul, South Korea, in August 2014. The 108 papers included in this volume were carefully reviewed and selected from 150 submissions. The papers are organized in topical sections named: invited; exploration; group; coding; topology; algebraic; geometry; surfaces; reasoning; special; Groebner; triangular; parametric; interfaces and general.
Publisher: Springer
ISBN: 3662441993
Category : Computers
Languages : en
Pages : 762
Book Description
This book constitutes the proceedings of the 4th International Conference on Mathematical Software, ICMS 2014, held in Seoul, South Korea, in August 2014. The 108 papers included in this volume were carefully reviewed and selected from 150 submissions. The papers are organized in topical sections named: invited; exploration; group; coding; topology; algebraic; geometry; surfaces; reasoning; special; Groebner; triangular; parametric; interfaces and general.
Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty
Author: Shi-Yu Huang
Publisher: Springer Science & Business Media
ISBN: 940092111X
Category : Business & Economics
Languages : en
Pages : 425
Book Description
Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.
Publisher: Springer Science & Business Media
ISBN: 940092111X
Category : Business & Economics
Languages : en
Pages : 425
Book Description
Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its detenninistic fonn is not always adapted to real world decision-making : everything must be expressed in tenns of linear constraints ; yet the coefficients that appear in these constraints may not be so well-defined, either because their value depends upon other parameters (not accounted for in the model) or because they cannot be precisely assessed, and only qualitative estimates of these coefficients are available. Similarly the best solution to a linear programming problem may be more a matter of compromise between various criteria rather than just minimizing or maximizing a linear objective function. Lastly the constraints, expressed by equalities or inequalities between linear expressions, are often softer in reality that what their mathematical expression might let us believe, and infeasibility as detected by the linear programming techniques can often been coped with by making trade-offs with the real world.
Quadratic Programming and Affine Variational Inequalities
Author: Gue Myung Lee
Publisher: Springer Science & Business Media
ISBN: 0387242783
Category : Mathematics
Languages : en
Pages : 353
Book Description
Quadratic programs and affine variational inequalities represent two fundamental, closely-related classes of problems in the t,heories of mathematical programming and variational inequalities, resp- tively. This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequ- ities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters discuss briefly two concrete nlodels (linear fractional vector optimization and the traffic equilibrium problem) whose analysis can benefit a lot from using the results on quadratic programs and affine variational inequalities. There are six chapters devoted to the study of conti- ity and/or differentiability properties of the characteristic maps and functions in quadratic programs and in affine variational inequa- ties where all the components of the problem data are subject to perturbation. Quadratic programs and affine variational inequa- ties under linear perturbations are studied in three other chapters. One special feature of the presentation is that when a certain pr- erty of a characteristic map or function is investigated, we always try first to establish necessary conditions for it to hold, then we go on to study whether the obtained necessary conditions are suf- cient ones. This helps to clarify the structures of the two classes of problems under consideration.
Publisher: Springer Science & Business Media
ISBN: 0387242783
Category : Mathematics
Languages : en
Pages : 353
Book Description
Quadratic programs and affine variational inequalities represent two fundamental, closely-related classes of problems in the t,heories of mathematical programming and variational inequalities, resp- tively. This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequ- ities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters discuss briefly two concrete nlodels (linear fractional vector optimization and the traffic equilibrium problem) whose analysis can benefit a lot from using the results on quadratic programs and affine variational inequalities. There are six chapters devoted to the study of conti- ity and/or differentiability properties of the characteristic maps and functions in quadratic programs and in affine variational inequa- ties where all the components of the problem data are subject to perturbation. Quadratic programs and affine variational inequa- ties under linear perturbations are studied in three other chapters. One special feature of the presentation is that when a certain pr- erty of a characteristic map or function is investigated, we always try first to establish necessary conditions for it to hold, then we go on to study whether the obtained necessary conditions are suf- cient ones. This helps to clarify the structures of the two classes of problems under consideration.