Author: John Neuberger
Publisher: Springer Science & Business Media
ISBN: 3642040403
Category : Mathematics
Languages : en
Pages : 287
Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.
Sobolev Gradients and Differential Equations
Author: John Neuberger
Publisher: Springer Science & Business Media
ISBN: 3642040403
Category : Mathematics
Languages : en
Pages : 287
Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642040403
Category : Mathematics
Languages : en
Pages : 287
Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.
Sobolev Gradients and Differential Equations
Author: john neuberger
Publisher: Springer
ISBN: 3642040411
Category : Mathematics
Languages : en
Pages : 287
Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.
Publisher: Springer
ISBN: 3642040411
Category : Mathematics
Languages : en
Pages : 287
Book Description
A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.
Sobolev Gradients and Differential Equations
Author: john neuberger
Publisher: Springer
ISBN: 354069594X
Category : Mathematics
Languages : en
Pages : 150
Book Description
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Publisher: Springer
ISBN: 354069594X
Category : Mathematics
Languages : en
Pages : 150
Book Description
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Sobolev Gradients and Differential Equations
Author: John W. Neuberger
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 164
Book Description
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 164
Book Description
A Sobolev gradient of a real-valued functional is a gradient of that functional taken relative to the underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. Equal emphasis is placed on numerical and theoretical matters. Several concrete applications are made to illustrate the method. These applications include (1) Ginzburg-Landau functionals of superconductivity, (2) problems of transonic flow in which type depends locally on nonlinearities, and (3) minimal surface problems. Sobolev gradient constructions rely on a study of orthogonal projections onto graphs of closed densely defined linear transformations from one Hilbert space to another. These developments use work of Weyl, von Neumann and Beurling.
Sobolev gradients and differential equations
Author: John William Neuberger
Publisher:
ISBN: 9783642040573
Category :
Languages : de
Pages : 149
Book Description
Publisher:
ISBN: 9783642040573
Category :
Languages : de
Pages : 149
Book Description
Gradient Inequalities
Author: Sen-Zhong Huang
Publisher: American Mathematical Soc.
ISBN: 0821840703
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book presents a survey of the relatively new research field of gradient inequalities and their applications. The exposition emphasizes the powerful applications of gradient inequalities in studying asymptotic behavior and stability of gradient-like dynamical systems. It explains in-depth how gradient inequalities are established and how they can be used to prove convergence and stability of solutions to gradient-like systems. This book will serve as an introduction for furtherstudies of gradient inequalities and their applications in other fields, such as geometry and computer sciences. This book is written for advanced graduate students, researchers and applied mathematicians interested in dynamical systems and mathematical modeling.
Publisher: American Mathematical Soc.
ISBN: 0821840703
Category : Mathematics
Languages : en
Pages : 194
Book Description
This book presents a survey of the relatively new research field of gradient inequalities and their applications. The exposition emphasizes the powerful applications of gradient inequalities in studying asymptotic behavior and stability of gradient-like dynamical systems. It explains in-depth how gradient inequalities are established and how they can be used to prove convergence and stability of solutions to gradient-like systems. This book will serve as an introduction for furtherstudies of gradient inequalities and their applications in other fields, such as geometry and computer sciences. This book is written for advanced graduate students, researchers and applied mathematicians interested in dynamical systems and mathematical modeling.
Elliptic–Hyperbolic Partial Differential Equations
Author: Thomas H. Otway
Publisher: Springer
ISBN: 3319197614
Category : Mathematics
Languages : en
Pages : 134
Book Description
This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications. Elliptic−Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form.
Publisher: Springer
ISBN: 3319197614
Category : Mathematics
Languages : en
Pages : 134
Book Description
This text is a concise introduction to the partial differential equations which change from elliptic to hyperbolic type across a smooth hypersurface of their domain. These are becoming increasingly important in diverse sub-fields of both applied mathematics and engineering, for example: • The heating of fusion plasmas by electromagnetic waves • The behaviour of light near a caustic • Extremal surfaces in the space of special relativity • The formation of rapids; transonic and multiphase fluid flow • The dynamics of certain models for elastic structures • The shape of industrial surfaces such as windshields and airfoils • Pathologies of traffic flow • Harmonic fields in extended projective space They also arise in models for the early universe, for cosmic acceleration, and for possible violation of causality in the interiors of certain compact stars. Within the past 25 years, they have become central to the isometric embedding of Riemannian manifolds and the prescription of Gauss curvature for surfaces: topics in pure mathematics which themselves have important applications. Elliptic−Hyperbolic Partial Differential Equations is derived from a mini-course given at the ICMS Workshop on Differential Geometry and Continuum Mechanics held in Edinburgh, Scotland in June 2013. The focus on geometry in that meeting is reflected in these notes, along with the focus on quasilinear equations. In the spirit of the ICMS workshop, this course is addressed both to applied mathematicians and to mathematically-oriented engineers. The emphasis is on very recent applications and methods, the majority of which have not previously appeared in book form.
Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms
Author: John Neuberger
Publisher: American Mathematical Soc.
ISBN: 0821833391
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains the proceedings of the conference on Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms. It presents current research in variational methods as applied to nonlinear elliptic PDE, although several articles concern nonlinear PDE that are nonvariational and/or nonelliptic. The book contains both survey and research papers discussing important open questions and offering suggestions on analytical and numerical techniques for solving those open problems. It is suitable for graduate students and research mathematicians interested in elliptic partial differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821833391
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume contains the proceedings of the conference on Variational Methods: Open Problems, Recent Progress, and Numerical Algorithms. It presents current research in variational methods as applied to nonlinear elliptic PDE, although several articles concern nonlinear PDE that are nonvariational and/or nonelliptic. The book contains both survey and research papers discussing important open questions and offering suggestions on analytical and numerical techniques for solving those open problems. It is suitable for graduate students and research mathematicians interested in elliptic partial differential equations.
A Sequence of Problems on Semigroups
Author: john neuberger
Publisher: Springer Science & Business Media
ISBN: 1461404304
Category : Mathematics
Languages : en
Pages : 131
Book Description
This text consists of a sequence of problems which develop a variety of aspects in the field of semigroupsof operators. Many of the problems are not found easily in other books. Written in the Socratic/Moore method, this is a problem book without the answers presented. To get the most out of the content requires high motivation from the reader to work out the exercises. The reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research. The compactness of the volume and the reputation of the author lends this consider set of problems to be a 'classic' in the making. This text is highly recommended for us as supplementary material for 3 graduate level courses.
Publisher: Springer Science & Business Media
ISBN: 1461404304
Category : Mathematics
Languages : en
Pages : 131
Book Description
This text consists of a sequence of problems which develop a variety of aspects in the field of semigroupsof operators. Many of the problems are not found easily in other books. Written in the Socratic/Moore method, this is a problem book without the answers presented. To get the most out of the content requires high motivation from the reader to work out the exercises. The reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research. The compactness of the volume and the reputation of the author lends this consider set of problems to be a 'classic' in the making. This text is highly recommended for us as supplementary material for 3 graduate level courses.
Pattern Recognition
Author: Rudolf Mester
Publisher: Springer
ISBN: 3642231233
Category : Computers
Languages : en
Pages : 490
Book Description
This book constitutes the refereed proceedings of the 33rd Symposium of the German Association for Pattern Recognition, DAGM 2011, held in Frankfurt/Main, Germany, in August/September 2011. The 20 revised full papers and 22 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on object recognition, adverse vision conditions challenge, shape and matching, segmentation and early vision, robot vision, machine learning, and motion. The volume also includes the young researcher's forum, a section where a carefully jury-selected ensemble of young researchers present their Master thesis work.
Publisher: Springer
ISBN: 3642231233
Category : Computers
Languages : en
Pages : 490
Book Description
This book constitutes the refereed proceedings of the 33rd Symposium of the German Association for Pattern Recognition, DAGM 2011, held in Frankfurt/Main, Germany, in August/September 2011. The 20 revised full papers and 22 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on object recognition, adverse vision conditions challenge, shape and matching, segmentation and early vision, robot vision, machine learning, and motion. The volume also includes the young researcher's forum, a section where a carefully jury-selected ensemble of young researchers present their Master thesis work.