Author: Nabil Derbel
Publisher: Springer
ISBN: 9811023743
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
Applications of Sliding Mode Control
Author: Nabil Derbel
Publisher: Springer
ISBN: 9811023743
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
Publisher: Springer
ISBN: 9811023743
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This book presents essential studies and applications in the context of sliding mode control, highlighting the latest findings from interdisciplinary theoretical studies, ranging from computational algorithm development to representative applications. Readers will learn how to easily tailor the techniques to accommodate their ad hoc applications. To make the content as accessible as possible, the book employs a clear route in each paper, moving from background to motivation, to quantitative development (equations), and lastly to case studies/illustrations/tutorials (simulations, experiences, curves, tables, etc.). Though primarily intended for graduate students, professors and researchers from related fields, the book will also benefit engineers and scientists from industry.
2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR)
Author: IEEE Staff
Publisher:
ISBN: 9781728173818
Category :
Languages : en
Pages :
Book Description
New theoretical and technological developments in predictive control, robust and adaptive control, networked control systems, fuzzy logic, neural networks and intelligent control, modelling and identification, discrete events and hybrid systems, fault detection, diagnosis, fault tolerant control, computer aided control systems design, mathematical foundations of robotics, motion planning and algorithms, human robot interaction
Publisher:
ISBN: 9781728173818
Category :
Languages : en
Pages :
Book Description
New theoretical and technological developments in predictive control, robust and adaptive control, networked control systems, fuzzy logic, neural networks and intelligent control, modelling and identification, discrete events and hybrid systems, fault detection, diagnosis, fault tolerant control, computer aided control systems design, mathematical foundations of robotics, motion planning and algorithms, human robot interaction
Sliding Mode Control
Author: Andrzej Bartoszewicz
Publisher: BoD – Books on Demand
ISBN: 9533071621
Category : Science
Languages : en
Pages : 560
Book Description
The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area.
Publisher: BoD – Books on Demand
ISBN: 9533071621
Category : Science
Languages : en
Pages : 560
Book Description
The main objective of this monograph is to present a broad range of well worked out, recent application studies as well as theoretical contributions in the field of sliding mode control system analysis and design. The contributions presented here include new theoretical developments as well as successful applications of variable structure controllers primarily in the field of power electronics, electric drives and motion steering systems. They enrich the current state of the art, and motivate and encourage new ideas and solutions in the sliding mode control area.
Renewable Power for Sustainable Growth
Author: Atif Iqbal
Publisher: Springer Nature
ISBN: 9813340800
Category : Technology & Engineering
Languages : en
Pages : 796
Book Description
This book is a collection of papers presented at the International Conference on Renewable Power (ICRP 2020), held during 13–14 July 2020 in Rajouri, Jammu, India. The book covers different topics of renewable energy sources in modern power systems. The book focusses on smart grid technologies and applications, renewable power systems including solar PV, solar thermal, wind, power generation, transmission and distribution, transportation electrification and automotive technologies, power electronics and applications in renewable power system, energy management and control system, energy storage in modern power system, active distribution network, artificial intelligence in renewable power systems, and cyber-physical systems and Internet of things in smart grid and renewable power.
Publisher: Springer Nature
ISBN: 9813340800
Category : Technology & Engineering
Languages : en
Pages : 796
Book Description
This book is a collection of papers presented at the International Conference on Renewable Power (ICRP 2020), held during 13–14 July 2020 in Rajouri, Jammu, India. The book covers different topics of renewable energy sources in modern power systems. The book focusses on smart grid technologies and applications, renewable power systems including solar PV, solar thermal, wind, power generation, transmission and distribution, transportation electrification and automotive technologies, power electronics and applications in renewable power system, energy management and control system, energy storage in modern power system, active distribution network, artificial intelligence in renewable power systems, and cyber-physical systems and Internet of things in smart grid and renewable power.
Sliding Mode Control and Observation
Author: Yuri Shtessel
Publisher: Springer Science & Business Media
ISBN: 0817648933
Category : Science
Languages : en
Pages : 369
Book Description
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbance observer based control *Numerous applications, including reusable launch vehicle and satellite formation control, blood glucose regulation, and car steering control are used as case studies Sliding Mode Control and Observation is aimed at graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems, while being of interest to a wider audience of graduate students in electrical/mechanical/aerospace engineering and applied mathematics, as well as researchers in electrical, computer, chemical, civil, mechanical, aeronautical, and industrial engineering, applied mathematicians, control engineers, and physicists. Sliding Mode Control and Observation provides the necessary tools for graduate students, researchers and engineers to robustly control complex and uncertain nonlinear dynamical systems. Exercises provided at the end of each chapter make this an ideal text for an advanced course taught in control theory.
Publisher: Springer Science & Business Media
ISBN: 0817648933
Category : Science
Languages : en
Pages : 369
Book Description
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbance observer based control *Numerous applications, including reusable launch vehicle and satellite formation control, blood glucose regulation, and car steering control are used as case studies Sliding Mode Control and Observation is aimed at graduate students with a basic knowledge of classical control theory and some knowledge of state-space methods and nonlinear systems, while being of interest to a wider audience of graduate students in electrical/mechanical/aerospace engineering and applied mathematics, as well as researchers in electrical, computer, chemical, civil, mechanical, aeronautical, and industrial engineering, applied mathematicians, control engineers, and physicists. Sliding Mode Control and Observation provides the necessary tools for graduate students, researchers and engineers to robustly control complex and uncertain nonlinear dynamical systems. Exercises provided at the end of each chapter make this an ideal text for an advanced course taught in control theory.
Sliding Mode Control Using MATLAB
Author: Jinkun Liu
Publisher: Academic Press
ISBN: 0128026707
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Sliding Mode Control Using MATLAB provides many sliding mode controller design examples, along with simulation examples and MATLAB® programs. Following the review of sliding mode control, the book includes sliding mode control for continuous systems, robust adaptive sliding mode control, sliding mode control for underactuated systems, backstepping, and dynamic surface sliding mode control, sliding mode control based on filter and observer, sliding mode control for discrete systems, fuzzy sliding mode control, neural network sliding mode control, and sliding mode control for robot manipulators. The contents of each chapter are independent, providing readers with information they can use for their own needs. It is suitable for the readers who work on mechanical and electronic engineering, electrical automation engineering, etc., and can also be used as a teaching reference for universities. - Provides many sliding mode controller design examples to help readers solve their research and design problems - Includes various, implementable, robust sliding mode control design solutions from engineering applications - Provides the simulation examples and MATLAB programs for each sliding mode control algorithm
Publisher: Academic Press
ISBN: 0128026707
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
Sliding Mode Control Using MATLAB provides many sliding mode controller design examples, along with simulation examples and MATLAB® programs. Following the review of sliding mode control, the book includes sliding mode control for continuous systems, robust adaptive sliding mode control, sliding mode control for underactuated systems, backstepping, and dynamic surface sliding mode control, sliding mode control based on filter and observer, sliding mode control for discrete systems, fuzzy sliding mode control, neural network sliding mode control, and sliding mode control for robot manipulators. The contents of each chapter are independent, providing readers with information they can use for their own needs. It is suitable for the readers who work on mechanical and electronic engineering, electrical automation engineering, etc., and can also be used as a teaching reference for universities. - Provides many sliding mode controller design examples to help readers solve their research and design problems - Includes various, implementable, robust sliding mode control design solutions from engineering applications - Provides the simulation examples and MATLAB programs for each sliding mode control algorithm
Advanced Sliding Mode Control for Mechanical Systems
Author: Jinkun Liu
Publisher: Springer Science & Business Media
ISBN: 3642209076
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
"Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation" takes readers through the basic concepts, covering the most recent research in sliding mode control. The book is written from the perspective of practical engineering and examines numerous classical sliding mode controllers, including continuous time sliding mode control, discrete time sliding mode control, fuzzy sliding mode control, neural sliding mode control, backstepping sliding mode control, dynamic sliding mode control, sliding mode control based on observer, terminal sliding mode control, sliding mode control for robot manipulators, and sliding mode control for aircraft. This book is intended for engineers and researchers working in the field of control. Dr. Jinkun Liu works at Beijing University of Aeronautics and Astronautics and Dr. Xinhua Wang works at the National University of Singapore.
Publisher: Springer Science & Business Media
ISBN: 3642209076
Category : Technology & Engineering
Languages : en
Pages : 367
Book Description
"Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation" takes readers through the basic concepts, covering the most recent research in sliding mode control. The book is written from the perspective of practical engineering and examines numerous classical sliding mode controllers, including continuous time sliding mode control, discrete time sliding mode control, fuzzy sliding mode control, neural sliding mode control, backstepping sliding mode control, dynamic sliding mode control, sliding mode control based on observer, terminal sliding mode control, sliding mode control for robot manipulators, and sliding mode control for aircraft. This book is intended for engineers and researchers working in the field of control. Dr. Jinkun Liu works at Beijing University of Aeronautics and Astronautics and Dr. Xinhua Wang works at the National University of Singapore.
Sliding Mode Control in Electro-Mechanical Systems
Author: Vadim Utkin
Publisher: CRC Press
ISBN: 1420065610
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its simple, flexible, and highly cost-effective approach to design and implementation. Most importantly, SMC promotes inherent order reduction and allows for the direct incorporation of robustness against system uncertainties and disturbances. These qualities lead to dramatic improvements in stability and help enable the design of high-performance control systems at low cost. Written by three of the most respected experts in the field, including one of its originators, this updated edition of Sliding Mode Control in Electro-Mechanical Systems reflects developments in the field over the past decade. It builds on the solid fundamentals presented in the first edition to promote a deeper understanding of the conventional SMC methodology, and it examines new design principles in order to broaden the application potential of SMC. SMC is particularly useful for the design of electromechanical systems because of its discontinuous structure. In fact, where the hardware of many electromechanical systems (such as electric motors) prescribes discontinuous inputs, SMC becomes the natural choice for direct implementation. This book provides a unique combination of theory, implementation issues, and examples of real-life applications reflective of the authors’ own industry-leading work in the development of robotics, automobiles, and other technological breakthroughs.
Publisher: CRC Press
ISBN: 1420065610
Category : Technology & Engineering
Languages : en
Pages : 503
Book Description
Apply Sliding Mode Theory to Solve Control Problems Interest in SMC has grown rapidly since the first edition of this book was published. This second edition includes new results that have been achieved in SMC throughout the past decade relating to both control design methodology and applications. In that time, Sliding Mode Control (SMC) has continued to gain increasing importance as a universal design tool for the robust control of linear and nonlinear electro-mechanical systems. Its strengths result from its simple, flexible, and highly cost-effective approach to design and implementation. Most importantly, SMC promotes inherent order reduction and allows for the direct incorporation of robustness against system uncertainties and disturbances. These qualities lead to dramatic improvements in stability and help enable the design of high-performance control systems at low cost. Written by three of the most respected experts in the field, including one of its originators, this updated edition of Sliding Mode Control in Electro-Mechanical Systems reflects developments in the field over the past decade. It builds on the solid fundamentals presented in the first edition to promote a deeper understanding of the conventional SMC methodology, and it examines new design principles in order to broaden the application potential of SMC. SMC is particularly useful for the design of electromechanical systems because of its discontinuous structure. In fact, where the hardware of many electromechanical systems (such as electric motors) prescribes discontinuous inputs, SMC becomes the natural choice for direct implementation. This book provides a unique combination of theory, implementation issues, and examples of real-life applications reflective of the authors’ own industry-leading work in the development of robotics, automobiles, and other technological breakthroughs.
Sliding Modes in Control and Optimization
Author: Vadim I. Utkin
Publisher: Springer Science & Business Media
ISBN: 3642843794
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
The book is devoted to systems with discontinuous control. The study of discontinuous dynamic systems is a multifacet problem which embraces mathematical, control theoretic and application aspects. Times and again, this problem has been approached by mathematicians, physicists and engineers, each profession treating it from its own positions. Interestingly, the results obtained by specialists in different disciplines have almost always had a significant effect upon the development of the control theory. It suffices to mention works on the theory of oscillations of discontinuous nonlinear systems, mathematical studies in ordinary differential equations with discontinuous righthand parts or variational problems in nonclassic statements. The unremitting interest to discontinuous control systems enhanced by their effective application to solution of problems most diverse in their physical nature and functional purpose is, in the author's opinion, a cogent argument in favour of the importance of this area of studies. It seems a useful effort to consider, from a control theoretic viewpoint, the mathematical and application aspects of the theory of discontinuous dynamic systems and determine their place within the scope of the present-day control theory. The first attempt was made by the author in 1975-1976 in his course on "The Theory of Discontinuous Dynamic Systems" and "The Theory of Variable Structure Systems" read to post-graduates at the University of Illinois, USA, and then presented in 1978-1979 at the seminars held in the Laboratory of Systems with Discontinous Control at the Institute of Control Sciences in Moscow.
Publisher: Springer Science & Business Media
ISBN: 3642843794
Category : Technology & Engineering
Languages : en
Pages : 300
Book Description
The book is devoted to systems with discontinuous control. The study of discontinuous dynamic systems is a multifacet problem which embraces mathematical, control theoretic and application aspects. Times and again, this problem has been approached by mathematicians, physicists and engineers, each profession treating it from its own positions. Interestingly, the results obtained by specialists in different disciplines have almost always had a significant effect upon the development of the control theory. It suffices to mention works on the theory of oscillations of discontinuous nonlinear systems, mathematical studies in ordinary differential equations with discontinuous righthand parts or variational problems in nonclassic statements. The unremitting interest to discontinuous control systems enhanced by their effective application to solution of problems most diverse in their physical nature and functional purpose is, in the author's opinion, a cogent argument in favour of the importance of this area of studies. It seems a useful effort to consider, from a control theoretic viewpoint, the mathematical and application aspects of the theory of discontinuous dynamic systems and determine their place within the scope of the present-day control theory. The first attempt was made by the author in 1975-1976 in his course on "The Theory of Discontinuous Dynamic Systems" and "The Theory of Variable Structure Systems" read to post-graduates at the University of Illinois, USA, and then presented in 1978-1979 at the seminars held in the Laboratory of Systems with Discontinous Control at the Institute of Control Sciences in Moscow.
The Reaction Wheel Pendulum
Author: Daniel J. Block
Publisher: Morgan & Claypool Publishers
ISBN: 1598291955
Category : Technology & Engineering
Languages : en
Pages : 112
Book Description
This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, to the nonlinear control problem of swingup control. We also discuss hybrid and switching control, which is useful for switching between the swingup and balance controllers. We also discuss important practical issues such as friction modeling and friction compensation, quantization of sensor signals, and saturation. This monograph can be used as a supplement for courses in feedback control at the undergraduate level, courses in mechatronics, or courses in linear and nonlinear state space control at the graduate level. It can also be used as a laboratory manual and as a reference for research in nonlinear control.
Publisher: Morgan & Claypool Publishers
ISBN: 1598291955
Category : Technology & Engineering
Languages : en
Pages : 112
Book Description
This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, to the nonlinear control problem of swingup control. We also discuss hybrid and switching control, which is useful for switching between the swingup and balance controllers. We also discuss important practical issues such as friction modeling and friction compensation, quantization of sensor signals, and saturation. This monograph can be used as a supplement for courses in feedback control at the undergraduate level, courses in mechatronics, or courses in linear and nonlinear state space control at the graduate level. It can also be used as a laboratory manual and as a reference for research in nonlinear control.