Skeleta in Non-Archimedean and Tropical Geometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Skeleta in Non-Archimedean and Tropical Geometry PDF full book. Access full book title Skeleta in Non-Archimedean and Tropical Geometry by Andrew MacPherson. Download full books in PDF and EPUB format.

Skeleta in Non-Archimedean and Tropical Geometry

Skeleta in Non-Archimedean and Tropical Geometry PDF Author: Andrew MacPherson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Skeleta in Non-Archimedean and Tropical Geometry

Skeleta in Non-Archimedean and Tropical Geometry PDF Author: Andrew MacPherson
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Nonarchimedean and Tropical Geometry

Nonarchimedean and Tropical Geometry PDF Author: Matthew Baker
Publisher: Springer
ISBN: 3319309455
Category : Mathematics
Languages : en
Pages : 534

Book Description
This volume grew out of two Simons Symposia on "Nonarchimedean and tropical geometry" which took place on the island of St. John in April 2013 and in Puerto Rico in February 2015. Each meeting gathered a small group of experts working near the interface between tropical geometry and nonarchimedean analytic spaces for a series of inspiring and provocative lectures on cutting edge research, interspersed with lively discussions and collaborative work in small groups. The articles collected here, which include high-level surveys as well as original research, mirror the main themes of the two Symposia. Topics covered in this volume include: Differential forms and currents, and solutions of Monge-Ampere type differential equations on Berkovich spaces and their skeletons; The homotopy types of nonarchimedean analytifications; The existence of "faithful tropicalizations" which encode the topology and geometry of analytifications; Relations between nonarchimedean analytic spaces and algebraic geometry, including logarithmic schemes, birational geometry, and the geometry of algebraic curves; Extended notions of tropical varieties which relate to Huber's theory of adic spaces analogously to the way that usual tropical varieties relate to Berkovich spaces; and Relations between nonarchimedean geometry and combinatorics, including deep and fascinating connections between matroid theory, tropical geometry, and Hodge theory.

A Study of Skeleta in Non-Archimedean Geometry

A Study of Skeleta in Non-Archimedean Geometry PDF Author: John Welliaveetil
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Tropical and Non-Archimedean Geometry

Tropical and Non-Archimedean Geometry PDF Author: Omid Amini
Publisher: American Mathematical Soc.
ISBN: 1470410214
Category : Mathematics
Languages : en
Pages : 274

Book Description
Over the past decade, it has become apparent that tropical geometry and non-Archimedean geometry should be studied in tandem; each subject has a great deal to say about the other. This volume is a collection of articles dedicated to one or both of these disciplines. Some of the articles are based, at least in part, on the authors' lectures at the 2011 Bellairs Workshop in Number Theory, held from May 6-13, 2011, at the Bellairs Research Institute, Holetown, Barbados. Lecture topics covered in this volume include polyhedral structures on tropical varieties, the structure theory of non-Archimedean curves (algebraic, analytic, tropical, and formal), uniformisation theory for non-Archimedean curves and abelian varieties, and applications to Diophantine geometry. Additional articles selected for inclusion in this volume represent other facets of current research and illuminate connections between tropical geometry, non-Archimedean geometry, toric geometry, algebraic graph theory, and algorithmic aspects of systems of polynomial equations.

Introduction to Tropical Geometry

Introduction to Tropical Geometry PDF Author: Diane Maclagan
Publisher: American Mathematical Society
ISBN: 1470468565
Category : Mathematics
Languages : en
Pages : 363

Book Description
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature. This wonderful book will appeal to students and researchers of all stripes: it begins at an undergraduate level and ends with deep connections to toric varieties, compactifications, and degenerations. In between, the authors provide the first complete proofs in book form of many fundamental results in the subject. The pages are sprinkled with illuminating examples, applications, and exercises, and the writing is lucid and meticulous throughout. It is that rare kind of book which will be used equally as an introductory text by students and as a reference for experts. —Matt Baker, Georgia Institute of Technology Tropical geometry is an exciting new field, which requires tools from various parts of mathematics and has connections with many areas. A short definition is given by Maclagan and Sturmfels: “Tropical geometry is a marriage between algebraic and polyhedral geometry”. This wonderful book is a pleasant and rewarding journey through different landscapes, inviting the readers from a day at a beach to the hills of modern algebraic geometry. The authors present building blocks, examples and exercises as well as recent results in tropical geometry, with ingredients from algebra, combinatorics, symbolic computation, polyhedral geometry and algebraic geometry. The volume will appeal both to beginning graduate students willing to enter the field and to researchers, including experts. —Alicia Dickenstein, University of Buenos Aires, Argentina

Homological Mirror Symmetry and Tropical Geometry

Homological Mirror Symmetry and Tropical Geometry PDF Author: Ricardo Castano-Bernard
Publisher: Springer
ISBN: 3319065149
Category : Mathematics
Languages : en
Pages : 445

Book Description
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

Computations and Moduli Spaces for Non-archimedean Varieties

Computations and Moduli Spaces for Non-archimedean Varieties PDF Author: Qingchun Ren
Publisher:
ISBN:
Category :
Languages : en
Pages : 147

Book Description
Tropical geometry and non-archimedean analytic geometry study algebraic varieties over a field K with a non-archimedean valuation. One of the major goals is to classify varietiess over K by intrinsic tropical properties. This thesis will contain my work at UC Berkeley and my joint work with others towards the goal. Chapter 2 discusses some moduli spaces and their tropicalizations. The image of the complement of a hyperplane arrangement under a monomial map can be tropicalized combinatorially using matroid theory. We apply this to classical moduli spaces that are associated with complex reflection arrangements. Starting from modular curves, we visit the Segre cubic, the Igusa quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our primary example is the Burkhardt quartic, whose tropicalization is a 3-dimensional fan in 39-dimensional space. This effectuates a synthesis of concrete and abstract approaches to tropical moduli of genus 2 curves. Chapter 3 develops numerical algorithms for Mumford curves over the field of p-adic numbers. Mumford curves are foundational to subjects dealing with non-archimedean varieties, and it has various applications in number theory. We implement algorithms for tasks such as: approximating the period matrices of the Jacobians of Mumford curves; computing the Berkovich skeleta of their analytifications; and approximating points in canonical embeddings. Chapter 4 discusses how to tropicalize del Pezzo surfaces of degree 5, 4 and 3. A generic cubic surface P^3 is a Del Pezzo surface of degree 3, which is obtained by blowing up the plane at 6 points. We study its tropicalization by taking the intrinsic embedding of the surface surface minus its 27 lines. Our techniques range from controlled modifications to running gfan on the universal Cox ideal over the relevant moduli space. We classify cubic surfaces by combinatorial properties of the arrangement of 27 trees obtained from the image of the 27 lines under this tropicalization. Chapter 5 discusses the classical Cayley-Bacharach theorem, which states that if two cubic curves on the plane intersect at 9 points, then the 9th point is uniquely determined if 8 of the points are given. The chapter derives a formula for the coordinates of the 9th point in terms of the coordinates of the 8 given points. Furthermore, I will discuss the geometric meaning of the formula, and how it is related to del Pezzo surfaces of degree 3.

Introduction to Tropical Geometry

Introduction to Tropical Geometry PDF Author: Diane Maclagan
Publisher: American Mathematical Soc.
ISBN: 0821851985
Category : Mathematics
Languages : en
Pages : 378

Book Description
Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature.

The Mathematics of Chip-Firing

The Mathematics of Chip-Firing PDF Author: Caroline J. Klivans
Publisher: CRC Press
ISBN: 135180099X
Category : Computers
Languages : en
Pages : 296

Book Description
The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.

Tropical Algebraic Geometry

Tropical Algebraic Geometry PDF Author: Ilia Itenberg
Publisher: Springer Science & Business Media
ISBN: 3034600488
Category : Mathematics
Languages : en
Pages : 113

Book Description
These notes present a polished introduction to tropical geometry and contain some applications of this rapidly developing and attractive subject. It consists of three chapters which complete each other and give a possibility for non-specialists to make the first steps in the subject which is not yet well represented in the literature. The notes are based on a seminar at the Mathematical Research Center in Oberwolfach in October 2004. The intended audience is graduate, post-graduate, and Ph.D. students as well as established researchers in mathematics.