Site Characterisation for Geological Storage of Carbon Dioxide PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Site Characterisation for Geological Storage of Carbon Dioxide PDF full book. Access full book title Site Characterisation for Geological Storage of Carbon Dioxide by Catherine M Gibson-Poole. Download full books in PDF and EPUB format.

Site Characterisation for Geological Storage of Carbon Dioxide

Site Characterisation for Geological Storage of Carbon Dioxide PDF Author: Catherine M Gibson-Poole
Publisher:
ISBN:
Category : Carbon dioxide mitigation
Languages : en
Pages : 500

Book Description
Release of anthropogenic greenhouse gas emissions to the atmosphere is a concern for global warming. Thus, practical and economic solutions are being sought to combat this problem. One possible methodology for reducing emissions is the geological storage of carbon dioxide (CO2). The subsurface behaviour of CO2 is influenced by many variables; therefore, accurate appraisal of a potential CO2 storage site requires detailed site characterisation. In particular, potential sites need to be evaluated geologically in terms of their injectivity, containment and capacity. Detailed site characterisation was undertaken for two possible sites for geological storage of CO2, located offshore northwest Australia in the Petrel and Barrow sub-basins. The injection targets in the Petrel Sub-basin are the Jurassic Plover and Elang formations, locally sealed by the Frigate Formation, and the overlying Cretaceous Sandpiper Sandstone, regionally sealed by the Bathurst Island Group. The Plover/Elang formations are laterally extensive, fluvio-deltaic sandstones of fair to good reservoir quality, with likely excellent lateral and vertical connectivity. The Frigate Formation may not be an effective seal up-dip, but the overlying secondary reservoir (Sandpiper Sandstone) and thick regional seal (Bathurst Island Group) will ensure continued CO2 containment. The Jurassic-Cretaceous post-rift sediments are structurally simple and dip gently up towards the basin margins with no defined structural closures. Therefore, hydrodynamic, residual and solubility trapping beneath the regional seal will be the dominant storage mechanisms. The potential storage capacity is vast (> 10,000 Mt), highlighting why deep saline formations may provide a realistic solution to large-scale greenhouse gas emissions reduction. In the Barrow Sub-basin, the Cretaceous Flag Sandstone is the injection target, sealed by the Muderong Shale. The reservoir units are laterally extensive, amalgamated, basin floor fan sandstones with excellent reservoir quality. Hemipelagic shale drapes may locally restrict the vertical connectivity. The Muderong Shale has excellent seal capacity, with the potential to withhold a CO2 column height of 565-790 m. The structural geometry is a large anticline and the trapping mechanisms are likely to a combination of stratigraphic, residual and solubility trapping along the axis of the anticline, as well as structural trapping within the anticlinal closure. A few large faults exist which could potentially be reactivated if injection pressures are not appropriately managed. The hydrodynamic flow has been altered by production induced pressure decline; however, the impact on the CO2 migration pathway is likely to be insignificant due to the stronger buoyancy drive. The detailed geological characterisation process identified that both sites are suitable candidates for geological storage of CO2. Geological storage of CO2 is technically feasible in a variety of different geological settings, as demonstrated by studies like these and CO2 storage projects already in operation. Key to the success of a CO2 storage project is an understanding of the stratigraphic architecture and reservoir heterogeneity. This will allow an optimal injection strategy to be devised to utilise the inherent geological characteristics of the site and maximise the benefits of injectivity, capacity and containment for efficient geological storage of CO2.

Site Characterisation for Geological Storage of Carbon Dioxide

Site Characterisation for Geological Storage of Carbon Dioxide PDF Author: Catherine M Gibson-Poole
Publisher:
ISBN:
Category : Carbon dioxide mitigation
Languages : en
Pages : 500

Book Description
Release of anthropogenic greenhouse gas emissions to the atmosphere is a concern for global warming. Thus, practical and economic solutions are being sought to combat this problem. One possible methodology for reducing emissions is the geological storage of carbon dioxide (CO2). The subsurface behaviour of CO2 is influenced by many variables; therefore, accurate appraisal of a potential CO2 storage site requires detailed site characterisation. In particular, potential sites need to be evaluated geologically in terms of their injectivity, containment and capacity. Detailed site characterisation was undertaken for two possible sites for geological storage of CO2, located offshore northwest Australia in the Petrel and Barrow sub-basins. The injection targets in the Petrel Sub-basin are the Jurassic Plover and Elang formations, locally sealed by the Frigate Formation, and the overlying Cretaceous Sandpiper Sandstone, regionally sealed by the Bathurst Island Group. The Plover/Elang formations are laterally extensive, fluvio-deltaic sandstones of fair to good reservoir quality, with likely excellent lateral and vertical connectivity. The Frigate Formation may not be an effective seal up-dip, but the overlying secondary reservoir (Sandpiper Sandstone) and thick regional seal (Bathurst Island Group) will ensure continued CO2 containment. The Jurassic-Cretaceous post-rift sediments are structurally simple and dip gently up towards the basin margins with no defined structural closures. Therefore, hydrodynamic, residual and solubility trapping beneath the regional seal will be the dominant storage mechanisms. The potential storage capacity is vast (> 10,000 Mt), highlighting why deep saline formations may provide a realistic solution to large-scale greenhouse gas emissions reduction. In the Barrow Sub-basin, the Cretaceous Flag Sandstone is the injection target, sealed by the Muderong Shale. The reservoir units are laterally extensive, amalgamated, basin floor fan sandstones with excellent reservoir quality. Hemipelagic shale drapes may locally restrict the vertical connectivity. The Muderong Shale has excellent seal capacity, with the potential to withhold a CO2 column height of 565-790 m. The structural geometry is a large anticline and the trapping mechanisms are likely to a combination of stratigraphic, residual and solubility trapping along the axis of the anticline, as well as structural trapping within the anticlinal closure. A few large faults exist which could potentially be reactivated if injection pressures are not appropriately managed. The hydrodynamic flow has been altered by production induced pressure decline; however, the impact on the CO2 migration pathway is likely to be insignificant due to the stronger buoyancy drive. The detailed geological characterisation process identified that both sites are suitable candidates for geological storage of CO2. Geological storage of CO2 is technically feasible in a variety of different geological settings, as demonstrated by studies like these and CO2 storage projects already in operation. Key to the success of a CO2 storage project is an understanding of the stratigraphic architecture and reservoir heterogeneity. This will allow an optimal injection strategy to be devised to utilise the inherent geological characteristics of the site and maximise the benefits of injectivity, capacity and containment for efficient geological storage of CO2.

Geological CO2 Storage Characterization

Geological CO2 Storage Characterization PDF Author: Ronald C. Surdam
Publisher: Springer Science & Business Media
ISBN: 1461457882
Category : Science
Languages : en
Pages : 310

Book Description
This book investigates geological CO2 storage and its role in greenhouse gas emissions reduction, enhanced oil recovery, and environmentally responsible use of fossil fuels. Written for energy/environmental regulators at every level of government (federal, state, etc.), scientists/academics, representatives from the power and fossil energy sectors, NGOs, and other interested parties, this book uses the characterization of the Rock Springs Uplift site in Wyoming as an integrated case study to illustrate the application of geological CO2 storage science, principles, and theory in a real-world scenario.

Geologic Carbon Sequestration

Geologic Carbon Sequestration PDF Author: V. Vishal
Publisher: Springer
ISBN: 3319270192
Category : Science
Languages : en
Pages : 336

Book Description
This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Geological Storage of Carbon Dioxide (CO2)

Geological Storage of Carbon Dioxide (CO2) PDF Author: J Gluyas
Publisher: Elsevier
ISBN: 085709727X
Category : Technology & Engineering
Languages : en
Pages : 380

Book Description
Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind’s emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS). Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands. Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS

Special Issue: "Site Characterization for Geological Storage of CO2"

Special Issue: Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description


Geological Storage of CO2

Geological Storage of CO2 PDF Author: Jan Martin Nordbotten
Publisher: John Wiley & Sons
ISBN: 1118137078
Category : Technology & Engineering
Languages : en
Pages : 212

Book Description
Despite the large research effort in both public and commercial companies, no textbook has yet been written on this subject. This book aims to provide an overview to the topic of Carbon Capture and Storage (CSS), while at the same time focusing on the dominant processes and the mathematical and numerical methods that need to be employed in order to analyze the relevant systems. The book clearly states the carbon problem and the role of CCS and carbon storage. Thereafter, it provides an introduction to single phase and multi-phase flow in porous media, including some of the most common mathematical analysis and an overview of numerical methods for the equations. A considerable part of the book discusses the appropriate scales of modeling, and how to formulate consistent governing equations at these scales. The book also illustrates real world data sets and how the ideas in the book can be exploited through combinations of analytical and numerical approaches.

Advances in the Geological Storage of Carbon Dioxide

Advances in the Geological Storage of Carbon Dioxide PDF Author: S. Lombardi
Publisher: Springer Science & Business Media
ISBN: 1402044712
Category : Science
Languages : en
Pages : 360

Book Description
As is now generally accepted mankind’s burning of fossil fuels has resulted in the mass transfer of greenhouse gases to the atmosphere, a modification of the delicately-balanced global carbon cycle, and a measurable change in world-wide temperatures and climate. Although not the most powerful greenhouse gas, carbon dioxide (CO) drives climate 2 change due to the enormous volumes of this gas pumped into the atmosphere every day. Produced in almost equal parts by the transportation, industrial and energy-generating sectors, atmospheric CO concentrations have 2 increased by about 50% over the last 300 years, and according to some sources are predicted to increase by up to 200% over pre-industrial levels during the next 100 years. If we are to reverse this trend, in order to prevent significant environmental change in the future, action must be taken immediately. While reduced use of fossil fuels (through conservation, increased efficiency and expanded use of renewable energy sources) must be our ultimate goal, short to medium term solutions are needed which can make an impact today. Various types of CO storage techniques have been proposed to fill this 2 need, with the injection of this gas into deep geological reservoirs being one of the most promising. For example this approach has the potential to become a closed loop system, whereby underground energy resources are brought to surface, their energy extracted (via burning or hydrogen extraction), and the resulting by-products returned to the subsurface.

Geologically Storing Carbon

Geologically Storing Carbon PDF Author: Peter Cook
Publisher: CSIRO PUBLISHING
ISBN: 1486302319
Category : Nature
Languages : en
Pages : 407

Book Description
Carbon capture and geological storage (CCS) is presently the only way that we can make deep cuts in emissions from fossil fuel-based, large-scale sources of CO2 such as power stations and industrial plants. But if this technology is to be acceptable to the community, it is essential that it is credibly demonstrated by world-class scientists and engineers in an open and transparent manner at a commercially significant scale. The aim of the Otway Project was to do just this. Geologically Storing Carbon provides a detailed account of the CO2CRC Otway Project, one of the most comprehensive demonstrations of the deep geological storage or geosequestration of carbon dioxide undertaken anywhere. This book of 18 comprehensive chapters written by leading experts in the field is concerned with outstanding science, but it is not just a collection of scientific papers – it is about 'learning by doing'. For example, it explains how the project was organised, managed, funded and constructed, as well as the approach taken to community issues, regulations and approvals. It also describes how to understand the site: Are the rocks mechanically suitable? Will the CO2 leak? Is there enough storage capacity? Is monitoring effective? This is the book for geologists, engineers, regulators, project developers, industry, communities or anyone who wants to better understand how a carbon storage project really 'works'. It is also for people concerned with obtaining an in-depth appreciation of one of the key technology options for decreasing greenhouse emissions to the atmosphere.

Site Characterization for Geological Storage of Carbon Dioxide

Site Characterization for Geological Storage of Carbon Dioxide PDF Author:
Publisher:
ISBN:
Category : Carbon dioxide mitigation
Languages : en
Pages : 1806

Book Description


Geological Storage of CO2 in Deep Saline Formations

Geological Storage of CO2 in Deep Saline Formations PDF Author: Auli Niemi
Publisher: Springer
ISBN: 9402409963
Category : Science
Languages : en
Pages : 567

Book Description
This book offers readers a comprehensive overview, and an in-depth understanding, of suitable methods for quantifying and characterizing saline aquifers for the geological storage of CO2. It begins with a general overview of the methodology and the processes that take place when CO2 is injected and stored in deep saline-water-containing formations. It subsequently presents mathematical and numerical models used for predicting the consequences of CO2 injection. This book provides descriptions of relevant experimental methods, from laboratory experiments to field scale site characterization and techniques for monitoring spreading of the injected CO2 within the formation. Experiences from a number of important field injection projects are reviewed, as are those from CO2 natural analog sites. Lastly, the book presents relevant risk management methods. Geological storage of CO2 is widely considered to be a key technology capable of substantially reducing the amount of CO2 released into the atmosphere, thereby reducing the negative impacts of such releases on the global climate. Around the world, projects are already in full swing, while others are now being initiated and executed to demonstrate the technology. Deep saline formations are the geological formations considered to hold the highest storage potential, due to their abundance worldwide. To date, however, these formations have been relatively poorly characterized, due to their low economic value. Accordingly, the processes involved in injecting and storing CO2 in such formations still need to be better quantified and methods for characterizing, modeling and monitoring this type of CO2 storage in such formations must be rapidly developed and refined.