Singularities of Differentiable Maps PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Singularities of Differentiable Maps PDF full book. Access full book title Singularities of Differentiable Maps by V.I. Arnold. Download full books in PDF and EPUB format.

Singularities of Differentiable Maps

Singularities of Differentiable Maps PDF Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390

Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).

Singularities of Differentiable Maps

Singularities of Differentiable Maps PDF Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390

Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).

Singularities of Differentiable Maps, Volume 1

Singularities of Differentiable Maps, Volume 1 PDF Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 0817683402
Category : Mathematics
Languages : en
Pages : 393

Book Description
​Singularity theory is a far-reaching extension of maxima and minima investigations of differentiable functions, with implications for many different areas of mathematics, engineering (catastrophe theory and the theory of bifurcations), and science. The three parts of this first volume of a two-volume set deal with the stability problem for smooth mappings, critical points of smooth functions, and caustics and wave front singularities. The second volume describes the topological and algebro-geometrical aspects of the theory: monodromy, intersection forms, oscillatory integrals, asymptotics, and mixed Hodge structures of singularities. The first volume has been adapted for the needs of non-mathematicians, presupposing a limited mathematical background and beginning at an elementary level. With this foundation, the book's sophisticated development permits readers to explore more applications than previous books on singularities.

Singularities of Differentiable Maps, Volume 2

Singularities of Differentiable Maps, Volume 2 PDF Author: Elionora Arnold
Publisher: Springer Science & Business Media
ISBN: 0817683437
Category : Mathematics
Languages : en
Pages : 500

Book Description
​​The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.

Real and Complex Singularities

Real and Complex Singularities PDF Author: Victor Goryunov
Publisher: American Mathematical Soc.
ISBN: 0821853597
Category : Mathematics
Languages : en
Pages : 218

Book Description
"This volume is a collection of papers presented at the 11th International Workshop on Real and Complex Singularities, held July 26-30, 2010, in Sao Carlos, Brazil, in honor of David Mond's 60th birthday. This volume reflects the high level of the conference discussing the most recent results and applications of singularity theory. Articles in the first part cover pure singularity theory: invariants, classification theory, and Milnor fibres. Articles in the second part cover singularities in topology and differential geometry, as well as algebraic geometry and bifurcation theory: Artin-Greenberg function of a plane curve singularity, metric theory of singularities, symplectic singularities, cobordisms of fold maps, Goursat distributions, sections of analytic varieties, Vassiliev invariants, projections of hypersurfaces, and linearity of the Jacobian ideal."--P. [4] of cover.

Handbook of Geometry and Topology of Singularities I

Handbook of Geometry and Topology of Singularities I PDF Author: José Luis Cisneros Molina
Publisher: Springer Nature
ISBN: 3030530612
Category : Mathematics
Languages : en
Pages : 616

Book Description
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

Introduction to Lipschitz Geometry of Singularities

Introduction to Lipschitz Geometry of Singularities PDF Author: Walter Neumann
Publisher: Springer Nature
ISBN: 3030618072
Category : Mathematics
Languages : en
Pages : 356

Book Description
This book presents a broad overview of the important recent progress which led to the emergence of new ideas in Lipschitz geometry and singularities, and started to build bridges to several major areas of singularity theory. Providing all the necessary background in a series of introductory lectures, it also contains Pham and Teissier's previously unpublished pioneering work on the Lipschitz classification of germs of plane complex algebraic curves. While a real or complex algebraic variety is topologically locally conical, it is in general not metrically conical; there are parts of its link with non-trivial topology which shrink faster than linearly when approaching the special point. The essence of the Lipschitz geometry of singularities is captured by the problem of building classifications of the germs up to local bi-Lipschitz homeomorphism. The Lipschitz geometry of a singular space germ is then its equivalence class in this category. The book is aimed at graduate students and researchers from other fields of geometry who are interested in studying the multiple open questions offered by this new subject.

Singularity Theory and its Applications

Singularity Theory and its Applications PDF Author: Mark Roberts
Publisher: Springer
ISBN: 3540470476
Category : Mathematics
Languages : en
Pages : 329

Book Description
A workshop on Singularities, Bifuraction and Dynamics was held at Warwick in July 1989, as part of a year-long symposium on Singularity Theory and its applications. The proceedings fall into two halves: Volume I mainly on connections with algebraic geometry and volume II on connections with dynamical systems theory, bifurcation theory and applications in the sciences. The papers are original research, stimulated by the symposium and workshop: All have been refereed and none will appear elsewhere. The main topic of volume II is new methods for the study of bifurcations in nonlinear dynamical systems, and applications of these.

New Developments in Singularity Theory

New Developments in Singularity Theory PDF Author: Dirk Wiersma
Publisher: Springer Science & Business Media
ISBN: 9401008345
Category : Mathematics
Languages : en
Pages : 470

Book Description
Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.

Singularities and Computer Algebra

Singularities and Computer Algebra PDF Author: Wolfram Decker
Publisher: Springer
ISBN: 3319288296
Category : Mathematics
Languages : en
Pages : 396

Book Description
This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.

Local Features in Natural Images via Singularity Theory

Local Features in Natural Images via Singularity Theory PDF Author: James Damon
Publisher: Springer
ISBN: 3319414712
Category : Mathematics
Languages : en
Pages : 255

Book Description
This monograph considers a basic problem in the computer analysis of natural images, which are images of scenes involving multiple objects that are obtained by a camera lens or a viewer’s eye. The goal is to detect geometric features of objects in the image and to separate regions of the objects with distinct visual properties. When the scene is illuminated by a single principal light source, we further include the visual clues resulting from the interaction of the geometric features of objects, the shade/shadow regions on the objects, and the “apparent contours”. We do so by a mathematical analysis using a repertoire of methods in singularity theory. This is applied for generic light directions of both the “stable configurations” for these interactions, whose features remain unchanged under small viewer movement, and the generic changes which occur under changes of view directions. These may then be used to differentiate between objects and determine their shapes and positions.