Singularities in Boundary Value Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Singularities in Boundary Value Problems PDF full book. Access full book title Singularities in Boundary Value Problems by H.G. Garnir. Download full books in PDF and EPUB format.

Singularities in Boundary Value Problems

Singularities in Boundary Value Problems PDF Author: H.G. Garnir
Publisher: Springer Science & Business Media
ISBN: 9400984340
Category : Mathematics
Languages : en
Pages : 390

Book Description
The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, •••••• The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, ••• ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking.

Singularities in Boundary Value Problems

Singularities in Boundary Value Problems PDF Author: H.G. Garnir
Publisher: Springer Science & Business Media
ISBN: 9400984340
Category : Mathematics
Languages : en
Pages : 390

Book Description
The 1980 Maratea NATO Advanced Study Institute (= ASI) followed the lines of the 1976 Liege NATO ASI. Indeed, the interest of boundary problems for linear evolution partial differential equations and systems is more and more acute because of the outstanding position of those problems in the mathematical description of the physical world, namely through sciences such as fluid dynamics, elastodynamics, electro dynamics, electromagnetism, plasma physics and so on. In those problems the question of the propagation of singularities of the solution has boomed these last years. Placed in its definitive mathematical frame in 1970 by L. Hormander, this branch -of the theory recorded a tremendous impetus in the last decade and is now eagerly studied by the most prominent research workers in the field of partial differential equations. It describes the wave phenomena connected with the solution of boundary problems with very general boundaries, by replacing the (generailly impossible) computation of a precise solution by a convenient asymptotic approximation. For instance, it allows the description of progressive waves in a medium with obstacles of various shapes, meeting classical phenomena as reflexion, refraction, transmission, and even more complicated ones, called supersonic waves, head waves, creeping waves, •••••• The !'tudy of singularities uses involved new mathematical concepts (such as distributions, wave front sets, asymptotic developments, pseudo-differential operators, Fourier integral operators, microfunctions, ••• ) but emerges as the most sensible application to physical problems. A complete exposition of the present state of this theory seemed to be still lacking.

Elliptic Boundary Value Problems in Domains with Point Singularities

Elliptic Boundary Value Problems in Domains with Point Singularities PDF Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426

Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Singularities in Boundary Value Problems

Singularities in Boundary Value Problems PDF Author: Pierre Grisvard
Publisher: Springer
ISBN:
Category : Boundary value problems
Languages : en
Pages : 224

Book Description


Boundary Value Problems for Analytic Functions

Boundary Value Problems for Analytic Functions PDF Author: Jian-Ke Lu
Publisher: World Scientific
ISBN: 9789810210205
Category : Mathematics
Languages : en
Pages : 484

Book Description
This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.

Elliptic Problems in Nonsmooth Domains

Elliptic Problems in Nonsmooth Domains PDF Author: Pierre Grisvard
Publisher: SIAM
ISBN: 1611972027
Category : Mathematics
Languages : en
Pages : 426

Book Description
Originally published: Boston: Pitman Advanced Pub. Program, 1985.

Elliptic Boundary Value Problems on Corner Domains

Elliptic Boundary Value Problems on Corner Domains PDF Author: Monique Dauge
Publisher: Springer
ISBN: 3540459421
Category : Mathematics
Languages : en
Pages : 266

Book Description
This research monograph focusses on a large class of variational elliptic problems with mixed boundary conditions on domains with various corner singularities, edges, polyhedral vertices, cracks, slits. In a natural functional framework (ordinary Sobolev Hilbert spaces) Fredholm and semi-Fredholm properties of induced operators are completely characterized. By specially choosing the classes of operators and domains and the functional spaces used, precise and general results may be obtained on the smoothness and asymptotics of solutions. A new type of characteristic condition is introduced which involves the spectrum of associated operator pencils and some ideals of polynomials satisfying some boundary conditions on cones. The methods involve many perturbation arguments and a new use of Mellin transform. Basic knowledge about BVP on smooth domains in Sobolev spaces is the main prerequisite to the understanding of this book. Readers interested in the general theory of corner domains will find here a new basic theory (new approaches and results) as well as a synthesis of many already known results; those who need regularity conditions and descriptions of singularities for numerical analysis will find precise statements and also a means to obtain further one in many explicit situtations.

Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation

Singularities in Elliptic Boundary Value Problems and Elasticity and Their Connection with Failure Initiation PDF Author: Zohar Yosibash
Publisher: Springer Science & Business Media
ISBN: 146141508X
Category : Mathematics
Languages : en
Pages : 473

Book Description
This introductory and self-contained book gathers as much explicit mathematical results on the linear-elastic and heat-conduction solutions in the neighborhood of singular points in two-dimensional domains, and singular edges and vertices in three-dimensional domains. These are presented in an engineering terminology for practical usage. The author treats the mathematical formulations from an engineering viewpoint and presents high-order finite-element methods for the computation of singular solutions in isotropic and anisotropic materials, and multi-material interfaces. The proper interpretation of the results in engineering practice is advocated, so that the computed data can be correlated to experimental observations. The book is divided into fourteen chapters, each containing several sections. Most of it (the first nine Chapters) addresses two-dimensional domains, where only singular points exist. The solution in a vicinity of these points admits an asymptotic expansion composed of eigenpairs and associated generalized flux/stress intensity factors (GFIFs/GSIFs), which are being computed analytically when possible or by finite element methods otherwise. Singular points associated with weakly coupled thermoelasticity in the vicinity of singularities are also addressed and thermal GSIFs are computed. The computed data is important in engineering practice for predicting failure initiation in brittle material on a daily basis. Several failure laws for two-dimensional domains with V-notches are presented and their validity is examined by comparison to experimental observations. A sufficient simple and reliable condition for predicting failure initiation (crack formation) in micron level electronic devices, involving singular points, is still a topic of active research and interest, and is addressed herein. Explicit singular solutions in the vicinity of vertices and edges in three-dimensional domains are provided in the remaining five chapters. New methods for the computation of generalized edge flux/stress intensity functions along singular edges are presented and demonstrated by several example problems from the field of fracture mechanics; including anisotropic domains and bimaterial interfaces. Circular edges are also presented and the author concludes with some remarks on open questions. This well illustrated book will appeal to both applied mathematicians and engineers working in the field of fracture mechanics and singularities.

Singular Differential and Integral Equations with Applications

Singular Differential and Integral Equations with Applications PDF Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9781402014574
Category : Mathematics
Languages : en
Pages : 428

Book Description
In the last century many problems which arose in the science, engineer ing and technology literature involved nonlinear complex phenomena. In many situations these natural phenomena give rise to (i). ordinary differ ential equations which are singular in the independent and/or dependent variables together with initial and boundary conditions, and (ii). Volterra and Fredholm type integral equations. As one might expect general exis tence results were difficult to establish for the problems which arose. Indeed until the early 1990's only very special examples were examined and these examples were usually tackled using some special device, which was usually only applicable to the particular problem under investigation. However in the 1990's new results in inequality and fixed point theory were used to present a very general existence theory for singular problems. This mono graph presents an up to date account of the literature on singular problems. One of our aims also is to present recent theory on singular differential and integral equations to a new and wider audience. The book presents a compact, thorough, and self-contained account for singular problems. An important feature of this book is that we illustrate how easily the theory can be applied to discuss many real world examples of current interest. In Chapter 1 we study differential equations which are singular in the independent variable. We begin with some standard notation in Section 1. 2 and introduce LP-Caratheodory functions. Some fixed point theorems, the Arzela- Ascoli theorem and Banach's theorem are also stated here.

Analysis of Singularities for Partial Differential Equations

Analysis of Singularities for Partial Differential Equations PDF Author: Shuxing Chen
Publisher: World Scientific
ISBN: 9814304832
Category : Mathematics
Languages : en
Pages : 207

Book Description
The book provides a comprehensive overview on the theory on analysis of singularities for partial differential equations (PDEs). It contains a summarization of the formation, development and main results on this topic. Some of the author's discoveries and original contributions are also included, such as the propagation of singularities of solutions to nonlinear equations, singularity index and formation of shocks.

Difference Methods for Singular Perturbation Problems

Difference Methods for Singular Perturbation Problems PDF Author: Grigory I. Shishkin
Publisher: CRC Press
ISBN: 0203492412
Category : Mathematics
Languages : en
Pages : 409

Book Description
Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book e