Author: S.N. Pnevmatikos
Publisher: Elsevier
ISBN: 008087214X
Category : Mathematics
Languages : en
Pages : 467
Book Description
This volume is an account of the lectures delivered at the international Conference ``Singularities and Dynamical Systems-83''. The main purpose of the Conference was to create conditions of scientific contact between mathematicians and physicists who have singularities and dynamical systems as common interests.
Singularities & Dynamical Systems
Author: S.N. Pnevmatikos
Publisher: Elsevier
ISBN: 008087214X
Category : Mathematics
Languages : en
Pages : 467
Book Description
This volume is an account of the lectures delivered at the international Conference ``Singularities and Dynamical Systems-83''. The main purpose of the Conference was to create conditions of scientific contact between mathematicians and physicists who have singularities and dynamical systems as common interests.
Publisher: Elsevier
ISBN: 008087214X
Category : Mathematics
Languages : en
Pages : 467
Book Description
This volume is an account of the lectures delivered at the international Conference ``Singularities and Dynamical Systems-83''. The main purpose of the Conference was to create conditions of scientific contact between mathematicians and physicists who have singularities and dynamical systems as common interests.
Singularities of Differentiable Maps
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390
Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390
Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Introduction to Singularities and Deformations
Author: Gert-Martin Greuel
Publisher: Springer Science & Business Media
ISBN: 3540284192
Category : Mathematics
Languages : en
Pages : 482
Book Description
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Publisher: Springer Science & Business Media
ISBN: 3540284192
Category : Mathematics
Languages : en
Pages : 482
Book Description
Singularity theory is a young, rapidly-growing topic with connections to algebraic geometry, complex analysis, commutative algebra, representations theory, Lie groups theory and topology, and many applications in the natural and technical sciences. This book presents the basic singularity theory of analytic spaces, including local deformation theory and the theory of plane curve singularities. It includes complete proofs.
Space Robotics: Dynamics and Control
Author: Yangsheng Xu
Publisher: Springer Science & Business Media
ISBN: 1461535883
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.
Publisher: Springer Science & Business Media
ISBN: 1461535883
Category : Technology & Engineering
Languages : en
Pages : 291
Book Description
Robotic technology offers two potential benefits for future space exploration. One benefit is minimizing the risk that astronauts face. The other benefit is increasing their productivity. Realizing the benefits of robotic technology in space will require solving several problems which are unique and now becoming active research topics. One of the most important research areas is dynamics, control, motion and planning for space robots by considering the dynamic interaction between the robot and the base (space station, space shuttle, or satellite). Any inefficiency in the planning and control can considerably risk by success of the space mission. Space Robotics: Dynamics and Control presents a collection of papers concerning fundamental problems in dynamics and control of space robots, focussing on issues relevant to dynamic base/robot interaction. The authors are all pioneers in theoretical analysis and experimental systems development of space robot technology. The chapters are organized within three problem areas: dynamics problems, nonholonomic nature problems, and control problems. This collection provides a solid reference for researchers in robotics, mechanics, control, and astronautical science.
Dynamical Systems VI
Author: Vladimir Igorevich Arnold
Publisher: Springer Science & Business Media
ISBN: 9783540505839
Category : Celestial mechanics
Languages : en
Pages : 264
Book Description
'EMS 6' is the latest volume in the sub series 'Dynamical Systems of the Encyclopaedia'. It is the first of two volumes covering Singularity Theory, which, besides its fundamental use in Dynamical Systems and Bifurcation Theory, is an important part of other fields such as algebraic geometry, differential geometry and geometric optics.
Publisher: Springer Science & Business Media
ISBN: 9783540505839
Category : Celestial mechanics
Languages : en
Pages : 264
Book Description
'EMS 6' is the latest volume in the sub series 'Dynamical Systems of the Encyclopaedia'. It is the first of two volumes covering Singularity Theory, which, besides its fundamental use in Dynamical Systems and Bifurcation Theory, is an important part of other fields such as algebraic geometry, differential geometry and geometric optics.
Invariant Manifolds, Entropy and Billiards. Smooth Maps with Singularities
Author: Anatole Katok
Publisher: Springer
ISBN: 3540473491
Category : Mathematics
Languages : en
Pages : 292
Book Description
Publisher: Springer
ISBN: 3540473491
Category : Mathematics
Languages : en
Pages : 292
Book Description
Singularities of Differentiable Maps, Volume 2
Author: Elionora Arnold
Publisher: Springer Science & Business Media
ISBN: 0817683437
Category : Mathematics
Languages : en
Pages : 500
Book Description
The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.
Publisher: Springer Science & Business Media
ISBN: 0817683437
Category : Mathematics
Languages : en
Pages : 500
Book Description
The present volume is the second in a two-volume set entitled Singularities of Differentiable Maps. While the first volume, subtitled Classification of Critical Points and originally published as Volume 82 in the Monographs in Mathematics series, contained the zoology of differentiable maps, that is, it was devoted to a description of what, where, and how singularities could be encountered, this second volume concentrates on elements of the anatomy and physiology of singularities of differentiable functions. The questions considered are about the structure of singularities and how they function.
Singularities of Solutions to Chemotaxis Systems
Author: Piotr Biler
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110599538
Category : Mathematics
Languages : en
Pages : 232
Book Description
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110599538
Category : Mathematics
Languages : en
Pages : 232
Book Description
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
Singularities: Formation, Structure, and Propagation
Author: J. Eggers
Publisher: Cambridge University Press
ISBN: 1316352390
Category : Mathematics
Languages : en
Pages : 471
Book Description
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Publisher: Cambridge University Press
ISBN: 1316352390
Category : Mathematics
Languages : en
Pages : 471
Book Description
Many key phenomena in physics and engineering are described as singularities in the solutions to the differential equations describing them. Examples covered thoroughly in this book include the formation of drops and bubbles, the propagation of a crack and the formation of a shock in a gas. Aimed at a broad audience, this book provides the mathematical tools for understanding singularities and explains the many common features in their mathematical structure. Part I introduces the main concepts and techniques, using the most elementary mathematics possible so that it can be followed by readers with only a general background in differential equations. Parts II and III require more specialised methods of partial differential equations, complex analysis and asymptotic techniques. The book may be used for advanced fluid mechanics courses and as a complement to a general course on applied partial differential equations.
Resolution of Singularities
Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 0821835556
Category : Mathematics
Languages : en
Pages : 198
Book Description
The notion of singularity is basic to mathematics. In algebraic geometry, the resolution of singularities by simple algebraic mappings is truly a fundamental problem. It has a complete solution in characteristic zero and partial solutions in arbitrary characteristic. The resolution of singularities in characteristic zero is a key result used in many subjects besides algebraic geometry, such as differential equations, dynamical systems, number theory, the theory of $\mathcal{D}$-modules, topology, and mathematical physics. This book is a rigorous, but instructional, look at resolutions. A simplified proof, based on canonical resolutions, is given for characteristic zero. There are several proofs given for resolution of curves and surfaces in characteristic zero and arbitrary characteristic. Besides explaining the tools needed for understanding resolutions, Cutkosky explains the history and ideas, providing valuable insight and intuition for the novice (or expert). There are many examples and exercises throughout the text. The book is suitable for a second course on an exciting topic in algebraic geometry. A core course on resolutions is contained in Chapters 2 through 6. Additional topics are covered in the final chapters. The prerequisite is a course covering the basic notions of schemes and sheaves.
Publisher: American Mathematical Soc.
ISBN: 0821835556
Category : Mathematics
Languages : en
Pages : 198
Book Description
The notion of singularity is basic to mathematics. In algebraic geometry, the resolution of singularities by simple algebraic mappings is truly a fundamental problem. It has a complete solution in characteristic zero and partial solutions in arbitrary characteristic. The resolution of singularities in characteristic zero is a key result used in many subjects besides algebraic geometry, such as differential equations, dynamical systems, number theory, the theory of $\mathcal{D}$-modules, topology, and mathematical physics. This book is a rigorous, but instructional, look at resolutions. A simplified proof, based on canonical resolutions, is given for characteristic zero. There are several proofs given for resolution of curves and surfaces in characteristic zero and arbitrary characteristic. Besides explaining the tools needed for understanding resolutions, Cutkosky explains the history and ideas, providing valuable insight and intuition for the novice (or expert). There are many examples and exercises throughout the text. The book is suitable for a second course on an exciting topic in algebraic geometry. A core course on resolutions is contained in Chapters 2 through 6. Additional topics are covered in the final chapters. The prerequisite is a course covering the basic notions of schemes and sheaves.