Author: James Montaldi
Publisher: Cambridge University Press
ISBN: 1009064398
Category : Mathematics
Languages : en
Pages : 450
Book Description
Suitable for advanced undergraduates, postgraduates and researchers, this self-contained textbook provides an introduction to the mathematics lying at the foundations of bifurcation theory. The theory is built up gradually, beginning with the well-developed approach to singularity theory through right-equivalence. The text proceeds with contact equivalence of map-germs and finally presents the path formulation of bifurcation theory. This formulation, developed partly by the author, is more general and more flexible than the original one dating from the 1980s. A series of appendices discuss standard background material, such as calculus of several variables, existence and uniqueness theorems for ODEs, and some basic material on rings and modules. Based on the author's own teaching experience, the book contains numerous examples and illustrations. The wealth of end-of-chapter problems develop and reinforce understanding of the key ideas and techniques: solutions to a selection are provided.
Singularities, Bifurcations and Catastrophes
Author: James Montaldi
Publisher: Cambridge University Press
ISBN: 1009064398
Category : Mathematics
Languages : en
Pages : 450
Book Description
Suitable for advanced undergraduates, postgraduates and researchers, this self-contained textbook provides an introduction to the mathematics lying at the foundations of bifurcation theory. The theory is built up gradually, beginning with the well-developed approach to singularity theory through right-equivalence. The text proceeds with contact equivalence of map-germs and finally presents the path formulation of bifurcation theory. This formulation, developed partly by the author, is more general and more flexible than the original one dating from the 1980s. A series of appendices discuss standard background material, such as calculus of several variables, existence and uniqueness theorems for ODEs, and some basic material on rings and modules. Based on the author's own teaching experience, the book contains numerous examples and illustrations. The wealth of end-of-chapter problems develop and reinforce understanding of the key ideas and techniques: solutions to a selection are provided.
Publisher: Cambridge University Press
ISBN: 1009064398
Category : Mathematics
Languages : en
Pages : 450
Book Description
Suitable for advanced undergraduates, postgraduates and researchers, this self-contained textbook provides an introduction to the mathematics lying at the foundations of bifurcation theory. The theory is built up gradually, beginning with the well-developed approach to singularity theory through right-equivalence. The text proceeds with contact equivalence of map-germs and finally presents the path formulation of bifurcation theory. This formulation, developed partly by the author, is more general and more flexible than the original one dating from the 1980s. A series of appendices discuss standard background material, such as calculus of several variables, existence and uniqueness theorems for ODEs, and some basic material on rings and modules. Based on the author's own teaching experience, the book contains numerous examples and illustrations. The wealth of end-of-chapter problems develop and reinforce understanding of the key ideas and techniques: solutions to a selection are provided.
Singularities, Bifurcations and Catastrophes
Author: James Montaldi
Publisher: Cambridge University Press
ISBN: 1107151643
Category : Mathematics
Languages : en
Pages : 449
Book Description
This textbook gives a contemporary account of singularity theory and its principal application, bifurcation theory.
Publisher: Cambridge University Press
ISBN: 1107151643
Category : Mathematics
Languages : en
Pages : 449
Book Description
This textbook gives a contemporary account of singularity theory and its principal application, bifurcation theory.
Bifurcations and Catastrophes
Author: Michel Demazure
Publisher: Springer Science & Business Media
ISBN: 3642571344
Category : Mathematics
Languages : en
Pages : 304
Book Description
Based on a lecture course, this text gives a rigorous introduction to nonlinear analysis, dynamical systems and bifurcation theory including catastrophe theory. Wherever appropriate it emphasizes a geometrical or coordinate-free approach allowing a clear focus on the essential mathematical structures. It brings out features common to different branches of the subject while giving ample references for more advanced or technical developments.
Publisher: Springer Science & Business Media
ISBN: 3642571344
Category : Mathematics
Languages : en
Pages : 304
Book Description
Based on a lecture course, this text gives a rigorous introduction to nonlinear analysis, dynamical systems and bifurcation theory including catastrophe theory. Wherever appropriate it emphasizes a geometrical or coordinate-free approach allowing a clear focus on the essential mathematical structures. It brings out features common to different branches of the subject while giving ample references for more advanced or technical developments.
Catastrophe Theory
Author: Vladimir I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 3642581242
Category : Mathematics
Languages : en
Pages : 161
Book Description
The new edition of this non-mathematical review of catastrophe theory contains updated results and many new or expanded topics including delayed loss of stability, shock waves, and interior scattering. Three new sections offer the history of singularity and its applications from da Vinci to today, a discussion of perestroika in terms of the theory of metamorphosis, and a list of 93 problems touching on most of the subject matter in the book.
Publisher: Springer Science & Business Media
ISBN: 3642581242
Category : Mathematics
Languages : en
Pages : 161
Book Description
The new edition of this non-mathematical review of catastrophe theory contains updated results and many new or expanded topics including delayed loss of stability, shock waves, and interior scattering. Three new sections offer the history of singularity and its applications from da Vinci to today, a discussion of perestroika in terms of the theory of metamorphosis, and a list of 93 problems touching on most of the subject matter in the book.
Catastrophe Theory
Author: Vladimir I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 3642969372
Category : Mathematics
Languages : en
Pages : 120
Book Description
Publisher: Springer Science & Business Media
ISBN: 3642969372
Category : Mathematics
Languages : en
Pages : 120
Book Description
Singularities of Differentiable Maps
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390
Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Publisher: Springer Science & Business Media
ISBN: 1461251540
Category : Mathematics
Languages : en
Pages : 390
Book Description
... there is nothing so enthralling, so grandiose, nothing that stuns or captivates the human soul quite so much as a first course in a science. After the first five or six lectures one already holds the brightest hopes, already sees oneself as a seeker after truth. I too have wholeheartedly pursued science passionately, as one would a beloved woman. I was a slave, and sought no other sun in my life. Day and night I crammed myself, bending my back, ruining myself over my books; I wept when I beheld others exploiting science fot personal gain. But I was not long enthralled. The truth is every science has a beginning, but never an end - they go on for ever like periodic fractions. Zoology, for example, has discovered thirty-five thousand forms of life ... A. P. Chekhov. "On the road" In this book a start is made to the "zoology" of the singularities of differentiable maps. This theory is a young branch of analysis which currently occupies a central place in mathematics; it is the crossroads of paths leading from very abstract corners of mathematics (such as algebraic and differential geometry and topology, Lie groups and algebras, complex manifolds, commutative algebra and the like) to the most applied areas (such as differential equations and dynamical systems, optimal control, the theory of bifurcations and catastrophes, short-wave and saddle-point asymptotics and geometrical and wave optics).
Structural Stability in Physics
Author: G. Güttinger
Publisher: Springer Science & Business Media
ISBN: 3642673635
Category : Science
Languages : en
Pages : 309
Book Description
This volume is the record and product of two International Symposia on the Appli cation of Catastrophe Theory and Topological Concepts in Physics, held in May and December 1978 at the Institute for Information Sciences, University of TUbingen. The May Symposium centered around the conferral of an honorary doctorate upon Professor Rene Thom, Paris, by the Faculty of Physics of the University of TUbingen in recognition of his discovery of universal structure principles and the new di mension he has added to scientific knowledge by his pioneering work on structural stability and morphogenesis. Owing to the broad scope and rapid development of the field, the May Sympos,ium was followed in December by a second one on the same sub jects. The symposia, attended by more than 50 scientists, brought together mathe maticians, physicists, chemists and biologists to exchange ideas about the recent faSCinating impact of topological concepts on the physical sciences, and also to introduce young scientists to the field. The contributions, covering a wide spectrum, are summarized in the subsequent Introduction. The primary support of the Symposia was provided by the "Vereinigung der Freunde der Univertat TUbingen" (Association of the Benefactors of the University). We are particularly indebted to Dr. H. Doerner for his personal engagement and efficient help with the projects, both in his capacity as Secretary of the Association and as Administrative Director of the University.
Publisher: Springer Science & Business Media
ISBN: 3642673635
Category : Science
Languages : en
Pages : 309
Book Description
This volume is the record and product of two International Symposia on the Appli cation of Catastrophe Theory and Topological Concepts in Physics, held in May and December 1978 at the Institute for Information Sciences, University of TUbingen. The May Symposium centered around the conferral of an honorary doctorate upon Professor Rene Thom, Paris, by the Faculty of Physics of the University of TUbingen in recognition of his discovery of universal structure principles and the new di mension he has added to scientific knowledge by his pioneering work on structural stability and morphogenesis. Owing to the broad scope and rapid development of the field, the May Sympos,ium was followed in December by a second one on the same sub jects. The symposia, attended by more than 50 scientists, brought together mathe maticians, physicists, chemists and biologists to exchange ideas about the recent faSCinating impact of topological concepts on the physical sciences, and also to introduce young scientists to the field. The contributions, covering a wide spectrum, are summarized in the subsequent Introduction. The primary support of the Symposia was provided by the "Vereinigung der Freunde der Univertat TUbingen" (Association of the Benefactors of the University). We are particularly indebted to Dr. H. Doerner for his personal engagement and efficient help with the projects, both in his capacity as Secretary of the Association and as Administrative Director of the University.
Dynamical Systems V
Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 3642578845
Category : Mathematics
Languages : en
Pages : 279
Book Description
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
Publisher: Springer Science & Business Media
ISBN: 3642578845
Category : Mathematics
Languages : en
Pages : 279
Book Description
Bifurcation theory and catastrophe theory are two well-known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, previously published as Volume 5 of the Encyclopaedia, have given a masterly exposition of these two theories, with penetrating insight.
Elements of Applied Bifurcation Theory
Author: Yuri Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Publisher: Springer Science & Business Media
ISBN: 1475739788
Category : Mathematics
Languages : en
Pages : 648
Book Description
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Computer-Aided Analysis of Difference Schemes for Partial Differential Equations
Author: Victor G. Ganzha
Publisher: John Wiley & Sons
ISBN: 1118030850
Category : Science
Languages : en
Pages : 458
Book Description
Advances in computer technology have conveniently coincided withtrends in numerical analysis toward increased complexity ofcomputational algorithms based on finite difference methods. It isno longer feasible to perform stability investigation of thesemethods manually--and no longer necessary. As this book shows,modern computer algebra tools can be combined with methods fromnumerical analysis to generate programs that will do the jobautomatically. Comprehensive, timely, and accessible--this is the definitivereference on the application of computerized symbolic manipulationsfor analyzing the stability of a wide range of difference schemes.In particular, it deals with those schemes that are used to solvecomplex physical problems in areas such as gas dynamics, heat andmass transfer, catastrophe theory, elasticity, shallow watertheory, and more. Introducing many new applications, methods, and concepts,Computer-Aided Analysis of Difference Schemes for PartialDifferential Equations * Shows how computational algebra expedites the task of stabilityanalysis--whatever the approach to stability investigation * Covers ten different approaches for each stability method * Deals with the specific characteristics of each method and itsapplication to problems commonly encountered by numerical modelers * Describes all basic mathematical formulas that are necessary toimplement each algorithm * Provides each formula in several global algebraic symboliclanguages, such as MAPLE, MATHEMATICA, and REDUCE * Includes numerous illustrations and thought-provoking examplesthroughout the text For mathematicians, physicists, and engineers, as well as forpostgraduate students, and for anyone involved with numericsolutions for real-world physical problems, this book provides avaluable resource, a helpful guide, and a head start ondevelopments for the twenty-first century.
Publisher: John Wiley & Sons
ISBN: 1118030850
Category : Science
Languages : en
Pages : 458
Book Description
Advances in computer technology have conveniently coincided withtrends in numerical analysis toward increased complexity ofcomputational algorithms based on finite difference methods. It isno longer feasible to perform stability investigation of thesemethods manually--and no longer necessary. As this book shows,modern computer algebra tools can be combined with methods fromnumerical analysis to generate programs that will do the jobautomatically. Comprehensive, timely, and accessible--this is the definitivereference on the application of computerized symbolic manipulationsfor analyzing the stability of a wide range of difference schemes.In particular, it deals with those schemes that are used to solvecomplex physical problems in areas such as gas dynamics, heat andmass transfer, catastrophe theory, elasticity, shallow watertheory, and more. Introducing many new applications, methods, and concepts,Computer-Aided Analysis of Difference Schemes for PartialDifferential Equations * Shows how computational algebra expedites the task of stabilityanalysis--whatever the approach to stability investigation * Covers ten different approaches for each stability method * Deals with the specific characteristics of each method and itsapplication to problems commonly encountered by numerical modelers * Describes all basic mathematical formulas that are necessary toimplement each algorithm * Provides each formula in several global algebraic symboliclanguages, such as MAPLE, MATHEMATICA, and REDUCE * Includes numerous illustrations and thought-provoking examplesthroughout the text For mathematicians, physicists, and engineers, as well as forpostgraduate students, and for anyone involved with numericsolutions for real-world physical problems, this book provides avaluable resource, a helpful guide, and a head start ondevelopments for the twenty-first century.