Author: E.I. Givargizov
Publisher: Springer Science & Business Media
ISBN: 1489925600
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential.
Oriented Crystallization on Amorphous Substrates
Author: E.I. Givargizov
Publisher: Springer Science & Business Media
ISBN: 1489925600
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential.
Publisher: Springer Science & Business Media
ISBN: 1489925600
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Present-day scienceand technology have become increasingly based on studies and applications of thin films. This is especiallytrue of solid-state physics, semiconduc tor electronics, integrated optics, computer science, and the like. In these fields, it is necessary to use filmswith an ordered structure, especiallysingle-crystallinefilms, because physical phenomena and effects in such films are most reproducible. Also, active parts of semiconductor and other devices and circuits are created, as a rule, in single-crystal bodies. To date, single-crystallinefilms have been mainly epitaxial (or heteroepitaxial); i.e., they have been grown on a single-crystalline substrate, and principal trends, e.g., in the evolution of integrated circuits (lCs), have been based on continuing reduction in feature size and increase in the number of components per chip. However, as the size decreases into the submicrometer range, technological and physical limitations in integrated electronics become more and more severe. It is generally believed that a feature size of about 0.1um will have a crucial character. In other words, the present two-dimensional ICs are anticipated to reach their limit of minimization in the near future, and it is realized that further increase of packing density and/or functions might depend on three-dimensional integration. To solve the problem, techniques for preparation of single-crystalline films on arbitrary (including amorphous) substrates are essential.
Silicon Molecular Beam Epitaxy
Author: E. Kasper
Publisher: CRC Press
ISBN: 1351093525
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.
Publisher: CRC Press
ISBN: 1351093525
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.
Silicon Epitaxy
Author:
Publisher: Elsevier
ISBN: 0080541003
Category : Science
Languages : en
Pages : 514
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Publisher: Elsevier
ISBN: 0080541003
Category : Science
Languages : en
Pages : 514
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded.
Growth of Crystals
Author: E. Givargizov
Publisher: Springer Science & Business Media
ISBN: 1461571227
Category : Science
Languages : en
Pages : 196
Book Description
The present volume continues the tradition of previous issues in covering all the main divisions in the science of crystal growth: growth from vapor, solution, and melt. At the same time, it reflects the recent tendency to more detailed research on solid -state crystal lization. In compiling the collection, preference has been given to papers that not only present novel scientific results but also contain surveys of the published data, although certain of the papers are purely original ones and some are purely of review character. The need for these surveys is dictated by at least two circumstances. First, there is an ongoing expan sion of specialized publications on crystal growth and, correspondingly, there is an increase in the volume of the publications requiring review. Second, rapid advances in crystal mak ing for various purposes (particularly microelectronics and quantum electronics) have meant that many important facts and observations on crystal formation are dispersed in numerous unspecialized publications and thus in part are lost to fundamental science.
Publisher: Springer Science & Business Media
ISBN: 1461571227
Category : Science
Languages : en
Pages : 196
Book Description
The present volume continues the tradition of previous issues in covering all the main divisions in the science of crystal growth: growth from vapor, solution, and melt. At the same time, it reflects the recent tendency to more detailed research on solid -state crystal lization. In compiling the collection, preference has been given to papers that not only present novel scientific results but also contain surveys of the published data, although certain of the papers are purely original ones and some are purely of review character. The need for these surveys is dictated by at least two circumstances. First, there is an ongoing expan sion of specialized publications on crystal growth and, correspondingly, there is an increase in the volume of the publications requiring review. Second, rapid advances in crystal mak ing for various purposes (particularly microelectronics and quantum electronics) have meant that many important facts and observations on crystal formation are dispersed in numerous unspecialized publications and thus in part are lost to fundamental science.
Amorphous and Heterogeneous Silicon Thin Films
Author:
Publisher:
ISBN:
Category : Amorphous semiconductors
Languages : en
Pages : 1204
Book Description
Publisher:
ISBN:
Category : Amorphous semiconductors
Languages : en
Pages : 1204
Book Description
Energy Research Abstracts
SERI Photovoltaic Advanced Research and Development Bibliography, 1982-1985
Crystal Growth Bibliography
Author:
Publisher: Springer Nature
ISBN: 1461596181
Category :
Languages : en
Pages : 270
Book Description
Publisher: Springer Nature
ISBN: 1461596181
Category :
Languages : en
Pages : 270
Book Description
SiGe, Ge, and Related Compounds 4: Materials, Processing, and Devices
Author: D. Harame
Publisher: The Electrochemical Society
ISBN: 1566778255
Category : Science
Languages : en
Pages : 1066
Book Description
Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds has become a key component in the arsenal in improving semiconductor performance. This symposium discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.
Publisher: The Electrochemical Society
ISBN: 1566778255
Category : Science
Languages : en
Pages : 1066
Book Description
Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds has become a key component in the arsenal in improving semiconductor performance. This symposium discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.
SiGe, Ge, and Related Compounds 3: Materials, Processing, and Devices
Author: David Harame
Publisher: The Electrochemical Society
ISBN: 1566776562
Category : Electronic apparatus and appliances
Languages : en
Pages : 1136
Book Description
Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds have become a key component of the arsenal in improving semiconductor performance. This issue of ECS Transactions discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.
Publisher: The Electrochemical Society
ISBN: 1566776562
Category : Electronic apparatus and appliances
Languages : en
Pages : 1136
Book Description
Advanced semiconductor technology is depending on innovation and less on "classical" scaling. SiGe, Ge, and Related Compounds have become a key component of the arsenal in improving semiconductor performance. This issue of ECS Transactions discusses the technology to form these materials, process them, FET devices incorporating them, Surfaces and Interfaces, Optoelectronic devices, and HBT devices.