Single Biomolecule Detection and Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Single Biomolecule Detection and Analysis PDF full book. Access full book title Single Biomolecule Detection and Analysis by Tuhin Subhra Santra. Download full books in PDF and EPUB format.

Single Biomolecule Detection and Analysis

Single Biomolecule Detection and Analysis PDF Author: Tuhin Subhra Santra
Publisher: CRC Press
ISBN: 1000916650
Category : Technology & Engineering
Languages : en
Pages : 355

Book Description
This collection discusses various micro/nanodevice design and fabrication for single-biomolecules detection. It will be an ideal reference text for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. This book- Discusses techniques of single-biomolecule detection, their advantages, limitations, and applications. Covers comprehensively several electrochemical detection techniques. Provides single-molecule separation, sensing, imaging, sequencing, and analysis in detail. Examines different types of cantilever-based biomolecule sensing, and its limitations. Single Biomolecule Detection and Analysis covers single-biomolecule detection and characterization using micro/nanotechnologies and micro/nanofluidic devices, electrical and magnetic detection technologies, microscopy and spectroscopy techniques, single biomolecule optical, and nanopore devices. The text covers key important biosensors-based detection, stochastic optical reconstruction microscopy-based detection, electrochemical detection, metabolic engineering of animal cells, single-molecule intracellular delivery and tracking, terahertz spectroscopy-based detection, total internal reflection fluorescence (TIFR) detection, and Fluorescence Correlation Spectroscopy (FCS) detection. The text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. Discussing chemical process, physical process, separation, sensing, imaging, sequencing, and analysis of single-molecule detection, this text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. It covers microscopy and spectroscopy techniques for single-biomolecule detection, analysis, and their biomedical engineering applications.

Single Biomolecule Detection and Analysis

Single Biomolecule Detection and Analysis PDF Author: Tuhin Subhra Santra
Publisher: CRC Press
ISBN: 1000916650
Category : Technology & Engineering
Languages : en
Pages : 355

Book Description
This collection discusses various micro/nanodevice design and fabrication for single-biomolecules detection. It will be an ideal reference text for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. This book- Discusses techniques of single-biomolecule detection, their advantages, limitations, and applications. Covers comprehensively several electrochemical detection techniques. Provides single-molecule separation, sensing, imaging, sequencing, and analysis in detail. Examines different types of cantilever-based biomolecule sensing, and its limitations. Single Biomolecule Detection and Analysis covers single-biomolecule detection and characterization using micro/nanotechnologies and micro/nanofluidic devices, electrical and magnetic detection technologies, microscopy and spectroscopy techniques, single biomolecule optical, and nanopore devices. The text covers key important biosensors-based detection, stochastic optical reconstruction microscopy-based detection, electrochemical detection, metabolic engineering of animal cells, single-molecule intracellular delivery and tracking, terahertz spectroscopy-based detection, total internal reflection fluorescence (TIFR) detection, and Fluorescence Correlation Spectroscopy (FCS) detection. The text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. Discussing chemical process, physical process, separation, sensing, imaging, sequencing, and analysis of single-molecule detection, this text will be useful for graduate students and professionals in diverse subject areas including materials science, biomedical engineering, chemical engineering, mechanical engineering, and nanoscience. It covers microscopy and spectroscopy techniques for single-biomolecule detection, analysis, and their biomedical engineering applications.

Single Molecule Analysis

Single Molecule Analysis PDF Author: Iddo Heller
Publisher: Springer Nature
ISBN: 1071633775
Category : Science
Languages : en
Pages : 511

Book Description
This third edition volume expands on the previous editions with new discussions on the latest techniques and developments in the field. The chapters in this book are organized into four parts, and cover topics such as optical tweezers; single-molecule fluorescence tools; atomic force microscopy; magnetic tweezers; applications to virus protein shells, unfolding of proteins, nucleic acids, motor proteins, in vivo and in vitro; and protocols to establish specific surface interactions and perform force calibration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Single Molecule Analysis: Methods and Protocols, Third Edition is a valuable resource for all researchers who want to learn more about this exciting and still expanding field. Chapters 2, 7, 8, 9, 12, 18, and 19 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

New Frontiers in Ultrasensitive Bioanalysis

New Frontiers in Ultrasensitive Bioanalysis PDF Author: Xiao-Hong Nancy Xu
Publisher: John Wiley & Sons
ISBN: 0470119497
Category : Science
Languages : en
Pages : 338

Book Description
An overview of current research and developments in ultrasensitive bioanalysis New platforms of ultrasensitive analysis of biomolecules and single living cells using multiplexing, single nanoparticle sensing, nano-fluidics, and single-molecule detection are advancing every scientific discipline at an unprecedented pace. With chapters written by a diverse group of scientists working in the forefront of ultrasensitive bioanalysis, this book provides an overview of the current status and an in-depth understanding of the objectives and future research directions of ultrasensitive bioanalysis. Spanning a wide spectrum of new research approaches, this book: Introduces new theories, ideas, methodologies, technologies, and applications of ultrasensitive bioanalysis in a wide variety of research fields Includes background, fundamentals, and descriptions of instrumentation and techniques behind every experimental design and approach to help readers explore the promising applications of new tools Covers single molecule detection (SMD), single living cell analysis, multi-functional nanoparticle probes, miniaturization, multiplexing, quantitative and qualitative analysis of metal ions and small molecules, and more Discusses techniques such as single molecule microscope and spectroscopy, single nanoparticle optics, single nanoparticle sensors, micro- and nano-fluidics, microarray detection, ultramicroelectrodes, electrochemiluminescence, mass spectrometry, and more This book will be a useful resource and an inspiration for scientists and graduate and undergraduate students in a wide variety of research fields, including chemistry, biology, biomedical science and engineering, and materials science and engineering.

Modern Biophysical Chemistry

Modern Biophysical Chemistry PDF Author: Peter Jomo Walla
Publisher: John Wiley & Sons
ISBN: 3527683550
Category : Science
Languages : en
Pages : 358

Book Description
This updated and up-to-date version of the first edition continues with the really interesting stuff to spice up a standard biophysics and biophysical chemistry course. All relevant methods used in current cutting edge research including such recent developments as super-resolution microscopy and next-generation DNA sequencing techniques, as well as industrial applications, are explained. The text has been developed from a graduate course taught by the author for several years, and by presenting a mix of basic theory and real-life examples, he closes the gap between theory and experiment. The first part, on basic biophysical chemistry, surveys fundamental and spectroscopic techniques as well as biomolecular properties that represent the modern standard and are also the basis for the more sophisticated technologies discussed later in the book. The second part covers the latest bioanalytical techniques such as the mentioned super-resolution and next generation sequencing methods, confocal fluorescence microscopy, light sheet microscopy, two-photon microscopy and ultrafast spectroscopy, single molecule optical, electrical and force measurements, fluorescence correlation spectroscopy, optical tweezers, quantum dots and DNA origami techniques. Both the text and illustrations have been prepared in a clear and accessible style, with extended and updated exercises (and their solutions) accompanying each chapter. Readers with a basic understanding of biochemistry and/or biophysics will quickly gain an overview of cutting edge technology for the biophysical analysis of proteins, nucleic acids and other biomolecules and their interactions. Equally, any student contemplating a career in the chemical, pharmaceutical or bio-industry will greatly benefit from the technological knowledge presented. Questions of differing complexity testing the reader's understanding can be found at the end of each chapter with clearly described solutions available on the Wiley-VCH textbook homepage under: www.wiley-vch.de/textbooks

Single-molecule Tracking and Its Application in Biomolecular Binding Detection

Single-molecule Tracking and Its Application in Biomolecular Binding Detection PDF Author: Cong Liu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 274

Book Description
In the past two decades significant advances have been made in single-molecule detection, which enables the direct observation of single biomolecules at work in real time under physiological conditions. In particular, the development of single-molecule tracking (SMT) microscopy allows us to monitor the motion paths of individual biomolecules in living systems, unveiling the localization dynamics and transport modalities of the biomolecules that support the development of life. While 3D-SMT is probably the most suitable method for determining whether tracked molecules (can be any biomolecule such as DNA, membrane receptors, and transcription factors) form dimers or complexes with other molecules, great technical challenges remain to be overcome before the potential of 3D-SMT in biomolecular binding detection can be realized. This dissertation describes my work on recent methodology development to overcome these challenges, and new applications of the 3D-SMT technology in rare molecular species quantification. First, we provide an overview of current SMT technologies, with an emphasis on three-dimensional feedback controlled SMT. Advantages and drawbacks of each SMT method are outlined. Second, we describe the theoretical modeling and instrumentation of our confocal tracking microscope. Its multi-dimensional sensing capability (3D position, diffusion coefficient, fluorescence lifetime) is experimentally characterized. In order to maximize the tracking duration, we have also developed strategies to effectively slow-down fast diffusing molecule, and optimized the buffer conditions. Third, we show that our 3D-SMT microscope can detect biomolecular association/disassociated by two types of contrast mechanisms: diffusion rate and lifetime FRET signal. DNA transient binding is used as a model system because of ease of fluorescent labeling and tunable binding kinetics. Both of the two mechanisms involve tracking a fluorescent-labeled single-stranded DNA (ssDNA), but the second approach also requires its complementary strand to be labeled by a dark quencher. A combined analysis of multiple single-molecule trajectories allow us to measure the kinetics that is even beyond the physical bandwidth of the tracking system. In the end, we introduce the application of SMT in rare single-molecule species quantification. The theory for predicting the sensitivity and fidelity is established. Our work highlights the fundamental limitations that we are facing in precise single-molecule identification and quantification without amplification.

Handbook of Single-Molecule Biophysics

Handbook of Single-Molecule Biophysics PDF Author: Peter Hinterdorfer
Publisher: Springer Science & Business Media
ISBN: 0387764976
Category : Science
Languages : en
Pages : 634

Book Description
This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.

Single Cell Analysis

Single Cell Analysis PDF Author: Tuhin Subhra Santra
Publisher: MDPI
ISBN: 3036506284
Category : Science
Languages : en
Pages : 254

Book Description
Cells are the most fundamental building block of all living organisms. The investigation of any type of disease mechanism and its progression still remains challenging due to cellular heterogeneity characteristics and physiological state of cells in a given population. The bulk measurement of millions of cells together can provide some general information on cells, but it cannot evolve the cellular heterogeneity and molecular dynamics in a certain cell population. Compared to this bulk or the average measurement of a large number of cells together, single-cell analysis can provide detailed information on each cell, which could assist in developing an understanding of the specific biological context of cells, such as tumor progression or issues around stem cells. Single-cell omics can provide valuable information about functional mutation and a copy number of variations of cells. Information from single-cell investigations can help to produce a better understanding of intracellular interactions and environmental responses of cellular organelles, which can be beneficial for therapeutics development and diagnostics purposes. This Special Issue is inviting articles related to single-cell analysis and its advantages, limitations, and future prospects regarding health benefits.

Single Molecule Biology

Single Molecule Biology PDF Author: Alexander E. Knight
Publisher: Academic Press
ISBN: 008092123X
Category : Science
Languages : en
Pages : 369

Book Description
Single molecule techniques, including single molecule fluorescence, optical tweezers, and scanning probe microscopy, allow for the manipulation and measurement of single biological molecules within a live cell or in culture. These approaches, amongst the most exciting tools available in biology today, offer powerful new ways to elucidate biological function, both in terms of revealing mechanisms of action on a molecular level as well as tracking the behaviour of molecules in living cells. This book provides the first complete and authoritative treatment of this rapidly emerging field, explicitly from a biological perspective.The contents are organized by biological system or molecule. Each chapter discusses insights that have been revealed about their mechanism, structure or function by single molecule techniques. Among the topics covered are enzymes, motor proteins, membrane channels, DNA, ribozymes, cytoskeletal proteins, and other key molecules of current interest. An introduction by the editor provides a concise review of key principles and an historical overview. The last section discusses applications in molecular diagnostics and drug discovery. Organized by biological system or molecule Each chapter discusses insights into mechanism of action, structure, and function Covers enzymes, motor proteins, membrane channels, DNA, ribozymes, etc Includes an introduction to key principles and an historical overview Discusses applications in molecular diagnostics and drug discovery Provides an expert's perspective on future development

Microfluidics and Nanotechnology

Microfluidics and Nanotechnology PDF Author: Eric Lagally
Publisher: CRC Press
ISBN: 1351831488
Category : Medical
Languages : en
Pages : 294

Book Description
An increasing number of technologies are being used to detect minute quantities of biomolecules and cells. However, it can be difficult to determine which technologies show the most promise for high-sensitivity and low-limit detection in different applications. Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit details proven approaches for the detection of single cells and even single molecules—approaches employed by the world’s foremost microfluidics and nanotechnology laboratories. While similar books concentrate only on microfluidics or nanotechnology, this book focuses on the combination of soft materials (elastomers and other polymers) with hard materials (semiconductors, metals, and glass) to form integrated detection systems for biological and chemical targets. It explores physical and chemical—as well as contact and noncontact—detection methods, using case studies to demonstrate system capabilities. Presenting a snapshot of the current state of the art, the text: Explains the theory behind different detection techniques, from mechanical resonators for detecting cell density to fiber-optic methods for detecting DNA hybridization, and beyond Examines microfluidic advances, including droplet microfluidics, digital microfluidics for manipulating droplets on the microscale, and more Highlights an array of technologies to allow for a comparison of the fundamental advantages and challenges of each, as well as an appreciation of the power of leveraging scalability and integration to achieve sensitivity at low cost Microfluidics and Nanotechnology: Biosensing to the Single Molecule Limit not only serves as a quick reference for the latest achievements in biochemical detection at the single-cell and single-molecule levels, but also provides researchers with inspiration for further innovation and expansion of the field.

Single Biomolecule Analysis with Integrated Nanofluidic Devices

Single Biomolecule Analysis with Integrated Nanofluidic Devices PDF Author: Mi Zhang (Biochemist)
Publisher:
ISBN:
Category : Analytical chemistry
Languages : en
Pages : 271

Book Description
We develop nanofluidic devices to study biomolecules and their reactions at the single-particle level. Analysis of single particles provides unprecedented insight into biological processes that is often missed when a population is studied as an ensemble. Because the nanofluidic devices are fabricated in plane, multiple fluidic components, e.g., nanopores, mixers, and reactors, can be easily integrated in any two-dimensional layout. Nanopores with dimensions comparable to the biomolecules of interest measure particle size and charge by label-free resistive-pulse sensing. Nanoscale mixers combine single biomolecules with reagents and introduce them into similarly sized reactors for chemical conversion. These in-plane structures also provide suitable probe volumes for continuous optical tracking. Thus, our nanofluidic devices offer an integrated environment for real-time detection of particle parameters at biologically relevant concentrations and over a range of reaction conditions. Initial experiments looked at how the presence of chaotropes, e.g., guanidine hydrochloride (GuHCl), led to either assembly or disassembly of virus-like particles, depending on the chaotrope concentration. An interesting observation of these assembly reactions was the formation of labile particles that appear to assemble, then disassemble, and reassemble into particles of different sizes.