Simulation of regional ground-water flow in the upper Deschutes basin, Oregon PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Simulation of regional ground-water flow in the upper Deschutes basin, Oregon PDF full book. Access full book title Simulation of regional ground-water flow in the upper Deschutes basin, Oregon by . Download full books in PDF and EPUB format.

Simulation of regional ground-water flow in the upper Deschutes basin, Oregon

Simulation of regional ground-water flow in the upper Deschutes basin, Oregon PDF Author:
Publisher: DIANE Publishing
ISBN: 1428984658
Category :
Languages : en
Pages : 95

Book Description


Simulation of Regional Ground-water Flow in the Upper Deschutes Basin, Oregon

Simulation of Regional Ground-water Flow in the Upper Deschutes Basin, Oregon PDF Author: Marshall W. Gannett
Publisher:
ISBN:
Category : Electronic government information
Languages : en
Pages : 96

Book Description


Simulation of regional ground-water flow in the upper Deschutes basin, Oregon

Simulation of regional ground-water flow in the upper Deschutes basin, Oregon PDF Author:
Publisher: DIANE Publishing
ISBN: 1428984658
Category :
Languages : en
Pages : 95

Book Description


Simulation of Regional Ground-water Flow in the Upper Deschutes Basin, Oregon

Simulation of Regional Ground-water Flow in the Upper Deschutes Basin, Oregon PDF Author: Marshall W. Gannett
Publisher:
ISBN:
Category : Aquifers
Languages : en
Pages : 84

Book Description


Geologic Framework of the Regional Ground-water Flow System in the Upper Deschutes Basin, Oregon

Geologic Framework of the Regional Ground-water Flow System in the Upper Deschutes Basin, Oregon PDF Author: J. T. Krohelski
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 90

Book Description


Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California

Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California PDF Author: Marshall W. Gannett
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 91

Book Description
The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of the pumped water comes from groundwater storage over a broad geographic area even after two decades. Moreover, because the effects are spread out over a broad area, the impacts to individual features are much smaller than in the case of nearby pumping. Simulations show that the discharge features most affected by pumping in the area of the Bureau of Reclamation's Klamath Irrigation Project are agricultural drains, and impacts to other surface-water features are small in comparison. A groundwater management model was developed that uses techniques of constrained optimization along with the groundwater flow model to identify the optimal strategy to meet water user needs while not violating defined constraints on impacts to groundwater levels and streamflows. The coupled groundwater simulation-optimization models were formulated to help identify strategies to meet water demand in the upper Klamath Basin. The models maximize groundwater pumping while simultaneously keeping the detrimental impacts of pumping on groundwater levels and groundwater discharge within prescribed limits. Total groundwater withdrawals were calculated under alternative constraints for drawdown, reductions in groundwater discharge to surface water, and water demand to understand the potential benefits and limitations for groundwater development in the upper Klamath Basin. The simulation-optimization model for the upper Klamath Basin provides an improved understanding of how the groundwater and surface-water system responds to sustained groundwater pumping within the Bureau of Reclamation's Klamath Project. Optimization model results demonstrate that a certain amount of supplemental groundwater pumping can occur without exceeding defined limits on drawdown and stream capture. The results of the different applications of the model demonstrate the importance of identifying constraint limits in order to better define the amount and distribution of groundwater withdrawal that is sustainable.

Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated deposits of the Colville River Watershed, Stevens County, Washington

Conceptual model and numerical simulation of the ground-water-flow system in the unconsolidated deposits of the Colville River Watershed, Stevens County, Washington PDF Author:
Publisher: DIANE Publishing
ISBN: 1428960082
Category :
Languages : en
Pages : 84

Book Description


Geologic Framework of the Regional Ground-water Flow System in the Upper Deschutes Basin, Oregon

Geologic Framework of the Regional Ground-water Flow System in the Upper Deschutes Basin, Oregon PDF Author: Kenneth E. Lite
Publisher:
ISBN:
Category : Deschutes River Watershed (Or.)
Languages : en
Pages : 62

Book Description


Water-resources Investigations Report

Water-resources Investigations Report PDF Author:
Publisher:
ISBN:
Category : Hydrology
Languages : en
Pages : 96

Book Description


Water-resources Investigations Report

Water-resources Investigations Report PDF Author: Carolyn J. Oblinger
Publisher:
ISBN:
Category : Aquifers
Languages : en
Pages : 142

Book Description


Simulation of Groundwater Flow and the Interaction of Groundwater and Surface Water in the Willamette Basin and Central Willamette Subbasin, Oregon

Simulation of Groundwater Flow and the Interaction of Groundwater and Surface Water in the Willamette Basin and Central Willamette Subbasin, Oregon PDF Author: Nora B. Herrera
Publisher:
ISBN:
Category : Groundwater flow
Languages : en
Pages : 152

Book Description
"Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface-water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon--referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals accounted for about 80 percent of that total. The upper 180 feet of productive aquifers in the Central Willamette and Southern Willamette subbasins produced about 70 percent of the total pumped volume. In this study, the USGS constructed a three-dimensional numerical finite-difference groundwater-flow model of the Willamette Basin representing the six hydrogeologic units, defined in previous investigations, as six model layers. From youngest to oldest, and [generally] uppermost to lowermost they are the: upper sedimentary unit, Willamette silt unit, middle sedimentary unit, lower sedimentary unit, Columbia River basalt unit, and basement confining unit. The high Cascade unit is not included in the groundwater-flow model because it is not present within the model boundaries. Geographic boundaries are simulated as no-flow (no water flowing in or out of the model), except where the Columbia River is simulated as a constant hydraulic head boundary. Streams are designated as head-dependent-flux boundaries, in which the flux depends on the elevation of the stream surface. Groundwater recharge from precipitation was estimated using the Precipitation-Runoff Modeling System (PRMS), a watershed model that accounts for evapotranspiration from the unsaturated zone. Evapotranspiration from the saturated zone was not considered an important component of groundwater discharge. Well pumping was simulated as specified flux and included public supply, irrigation, and industrial pumping. Hydraulic conductivity values were estimated from previous studies through aquifer slug and permeameter tests, specific capacity data, core analysis, and modeling. Upper, middle and lower sedimentary unit horizontal hydraulic conductivity values were differentiated between the Portland subbasin and the Tualatin, Central Willamette, and Southern Willamette subbasins based on preliminary model results."--Summary.