Simulation of Flexible Fibers in Stokes Flow PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Simulation of Flexible Fibers in Stokes Flow PDF full book. Access full book title Simulation of Flexible Fibers in Stokes Flow by Mohsan Jameel. Download full books in PDF and EPUB format.

Simulation of Flexible Fibers in Stokes Flow

Simulation of Flexible Fibers in Stokes Flow PDF Author: Mohsan Jameel
Publisher: LAP Lambert Academic Publishing
ISBN: 9783847315575
Category :
Languages : en
Pages : 92

Book Description
When elastic fibers are immersed in a Newtonian fluid, the behavior of the system, or the "fiber suspension" becomes non-Newtonian. Understanding the dynamics of such systems is of particular interest in a wide variety of fields, including locomotion of microorganisms, paper and pulp industry, microfluidics etc. When these fibers are immersed in the fluid at low Reynolds number, the elastic equation for the fibers couples to the Stokes equations, which greatly increases the computational complexity of the problem. I have simulated buckling behavior of a single fiber suspended in a shear flow and have applied two numerical method, a slender body approximation known as Local Drag model and a regularized Boundary Integral method known as Regularized Stokeslet method. We have extended the Local Drag model to simulate naturally bent fibers based on the target or resting curvature of the fibers. Microorganisms possess fiber-like organs known as the appendages and swim by flapping these organs. We have also simulated swimming motion of a simple microorganism model by imposing a time dependent resting curvature of these fibers.

Simulation of Flexible Fibers in Stokes Flow

Simulation of Flexible Fibers in Stokes Flow PDF Author: Mohsan Jameel
Publisher: LAP Lambert Academic Publishing
ISBN: 9783847315575
Category :
Languages : en
Pages : 92

Book Description
When elastic fibers are immersed in a Newtonian fluid, the behavior of the system, or the "fiber suspension" becomes non-Newtonian. Understanding the dynamics of such systems is of particular interest in a wide variety of fields, including locomotion of microorganisms, paper and pulp industry, microfluidics etc. When these fibers are immersed in the fluid at low Reynolds number, the elastic equation for the fibers couples to the Stokes equations, which greatly increases the computational complexity of the problem. I have simulated buckling behavior of a single fiber suspended in a shear flow and have applied two numerical method, a slender body approximation known as Local Drag model and a regularized Boundary Integral method known as Regularized Stokeslet method. We have extended the Local Drag model to simulate naturally bent fibers based on the target or resting curvature of the fibers. Microorganisms possess fiber-like organs known as the appendages and swim by flapping these organs. We have also simulated swimming motion of a simple microorganism model by imposing a time dependent resting curvature of these fibers.

Simulation of Lateral Migration and Sedimentation of a Flexible Fiber in a Vertical Weak Shear Flow

Simulation of Lateral Migration and Sedimentation of a Flexible Fiber in a Vertical Weak Shear Flow PDF Author: Ali Ibrahim Neamah Neamah
Publisher:
ISBN:
Category :
Languages : en
Pages : 58

Book Description
This research is a thorough numerical investigation and critical analysis of lateral migration of a deformable particle settling in a vertical weak shear flow. Under the vertical weak shear fluid, the deformable particle may move either to the coagulation area, or the dispersion area, depending on Reynolds numbers, shear Reynolds number, fiber flexibility, and aspect ratio. In this study, a lattice Boltzmann equation is used to solve Navier-Stokes equation and a flexible particle method is employed to attack the problem of motion of a flexible fiber. A bounce-back rule is used to deal with moving boundaries interacting with fluids. Several simulations are first conducted at the same shear Reynolds number, particle settling Reynolds number and aspect ratio except that the rigidity is varied at different levels. It is found that the rigidity plays a critical role, may change particle lateral migration direction, either migrate toward a coagulation area, or toward a dispersion area, depending the value of the rigidity. It shows that the rigidity may alter the fiber inertia, in turn, convert coagulation to dispersion. In other words, flexibility may alter the stability of fiber suspension. At a low settling Reynolds number, as the vertical shear flow increases the fiber dispersion trend increases and the lower rigid fiber has a larger tendency to disperse.

Dynamic Simulation of Flexible Fiber Suspensions

Dynamic Simulation of Flexible Fiber Suspensions PDF Author: Russell F. Ross
Publisher:
ISBN:
Category :
Languages : en
Pages : 366

Book Description


The Effect of Flexibility on Interaction of Two Fibers Settling in Moderate Reynolds Numbers

The Effect of Flexibility on Interaction of Two Fibers Settling in Moderate Reynolds Numbers PDF Author: Ahmed Alhasan
Publisher:
ISBN:
Category : Fibers
Languages : en
Pages : 86

Book Description
The behavior of solid particles in a fluid has become an important topic. The need to improve our understanding of the mechanisms of fluid-particle interaction is the motivation for the present work. The characteristics of fibers suspensions depend on the many variables such as flexibility, Reynolds numbers, density and aspect ratio. The aim of this work is to probe effects of these variables on sedimentation behavior by using a fiber-level simulation technique. In this techniques, a D3Q15 model in a lattice Boltzmann equation with a Bhatnagar-Gross-Krook (BGK) approximation is used to simulate motion of fluids, where Navier-Stokes equations are solved equivalently. Meanwhile, a lattice spring model is utilized to mimic the deformation of flexible fibers. The interaction between fluid and solid fiber is handled by an immersed boundary method. Dynamic motion of a single flexible fiber and two flexible fibers settling in an infinite long fluid column at low and moderate Reynolds numbers are numerically simulated in a three dimensional space. The fiber flexibility and density are varied at different levels and their effects on sedimentation are studied. In the simulations, cuboid and cylindrical fibers at different aspect ratios are considered. It is demonstrated that the fiber flexibility has an important impact on fiber position, settling velocities, and fluid structures, where the drafting, kissing, and tumbling (DKT) mechanisms play important roles. The simulation results provide useful information, at a microscopic level, which may not be easily measured in a lab environment.

Brownian Dynamics Simulation of Flexible Fibers

Brownian Dynamics Simulation of Flexible Fibers PDF Author: Heiko Bette
Publisher:
ISBN:
Category :
Languages : en
Pages : 450

Book Description


Simulating Systems of Flexible Fibers

Simulating Systems of Flexible Fibers PDF Author: Leonard H. Switzer
Publisher:
ISBN:
Category :
Languages : en
Pages : 298

Book Description


Analysis of Flexible Fiber Suspensions Using the Lattice Boltzmann Method

Analysis of Flexible Fiber Suspensions Using the Lattice Boltzmann Method PDF Author: Sheila Rezak
Publisher:
ISBN:
Category : Fiber reclamation
Languages : en
Pages :

Book Description
Results from simulation show the rigid fiber in simple shear flow produces a good agreement for orientation of a fiber relative to the theoretical study by Jeffery (1922). The flexible fiber exhibits an increase on the rotational period from the rigid fiber due to more deformation shape is revealed during rotation. The simulation technique demonstrates the ability to simulate fiber-fiber interactions to further study of relative viscosity of suspensions in shear flow. Simulation results show that fiber orientation and relative viscosity depend on the fiber characteristics (fiber aspect ratio, fiber flexibility, and volume fraction). The results are verified against known experimental measurements and theoretical results.

On the 3-dimensional Fluid-structure Interaction of Flexible Fibers in a Flow

On the 3-dimensional Fluid-structure Interaction of Flexible Fibers in a Flow PDF Author: Ryan Howard Allaire
Publisher:
ISBN:
Category : Fibers
Languages : en
Pages : 132

Book Description


Multiscale Simulations and Mechanics of Biological Materials

Multiscale Simulations and Mechanics of Biological Materials PDF Author: Shaofan Li
Publisher: John Wiley & Sons
ISBN: 1118402944
Category : Technology & Engineering
Languages : en
Pages : 509

Book Description
Multiscale Simulations and Mechanics of Biological Materials A compilation of recent developments in multiscale simulation and computational biomaterials written by leading specialists in the field Presenting the latest developments in multiscale mechanics and multiscale simulations, and offering a unique viewpoint on multiscale modelling of biological materials, this book outlines the latest developments in computational biological materials from atomistic and molecular scale simulation on DNA, proteins, and nano-particles, to meoscale soft matter modelling of cells, and to macroscale soft tissue and blood vessel, and bone simulations. Traditionally, computational biomaterials researchers come from biological chemistry and biomedical engineering, so this is probably the first edited book to present work from these talented computational mechanics researchers. The book has been written to honor Professor Wing Liu of Northwestern University, USA, who has made pioneering contributions in multiscale simulation and computational biomaterial in specific simulation of drag delivery at atomistic and molecular scale and computational cardiovascular fluid mechanics via immersed finite element method. Key features: Offers a unique interdisciplinary approach to multiscale biomaterial modelling aimed at both accessible introductory and advanced levels Presents a breadth of computational approaches for modelling biological materials across multiple length scales (molecular to whole-tissue scale), including solid and fluid based approaches A companion website for supplementary materials plus links to contributors’ websites (www.wiley.com/go/li/multiscale)

Handbook of Materials Modeling

Handbook of Materials Modeling PDF Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402032862
Category : Science
Languages : en
Pages : 2903

Book Description
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.