Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Discrete Choice Methods with Simulation
Author: Kenneth Train
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Publisher: Cambridge University Press
ISBN: 0521766559
Category : Business & Economics
Languages : en
Pages : 399
Book Description
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Modeling Ordered Choices
Author: William H. Greene
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Publisher: Cambridge University Press
ISBN: 1139485954
Category : Business & Economics
Languages : en
Pages : 383
Book Description
It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Generalized Linear Models
Author: Dipak K. Dey
Publisher: CRC Press
ISBN: 9780824790349
Category : Mathematics
Languages : en
Pages : 450
Book Description
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
Publisher: CRC Press
ISBN: 9780824790349
Category : Mathematics
Languages : en
Pages : 450
Book Description
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.
Spatial Econometrics: Spatial Autoregressive Models
Author: Lung-fei Lee
Publisher: World Scientific
ISBN: 9811270503
Category : Business & Economics
Languages : en
Pages : 894
Book Description
This is the most recently developed book in Spatial Econometrics which cover important models and estimation methods. Its coverage is rather broad, and some of the topics covered have only been developed in the recent econometric literature in spatial econometrics.The book summarizes our devoted efforts on spatial econometrics that represent joint contributions with former PhD advisees from the Ohio State University in Columbus, Ohio, USA.The coverage is comprehensive and there are a total of sixteen chapters from basic statistics and statistical theory of linear-quadratic forms, law of large numbers (LLN) and central limit theory (CLT) on martingales to nonlinear spatial mixing and spatial near-epoch dependence theories, which can justify the statistic inferences for various spatial models and their estimation. New estimation and testing approaches in empirical likelihood and general empirical likelihood, and Bootstrapping are presented. Model selection is also discussed in this book. In addition to the popular spatial autoregressive models, there are chapters on multivariate SAR models, simultaneous SAR models, and panel dynamic spatial models. Recent econometric developments on intertemporal spatial models with rational expectations and flows data in trade theory will also be included. In terms of statistics, classical estimation, testing and inference are the main concerns, and we provide classical inference for the justification of Bayesian simulation approaches.
Publisher: World Scientific
ISBN: 9811270503
Category : Business & Economics
Languages : en
Pages : 894
Book Description
This is the most recently developed book in Spatial Econometrics which cover important models and estimation methods. Its coverage is rather broad, and some of the topics covered have only been developed in the recent econometric literature in spatial econometrics.The book summarizes our devoted efforts on spatial econometrics that represent joint contributions with former PhD advisees from the Ohio State University in Columbus, Ohio, USA.The coverage is comprehensive and there are a total of sixteen chapters from basic statistics and statistical theory of linear-quadratic forms, law of large numbers (LLN) and central limit theory (CLT) on martingales to nonlinear spatial mixing and spatial near-epoch dependence theories, which can justify the statistic inferences for various spatial models and their estimation. New estimation and testing approaches in empirical likelihood and general empirical likelihood, and Bootstrapping are presented. Model selection is also discussed in this book. In addition to the popular spatial autoregressive models, there are chapters on multivariate SAR models, simultaneous SAR models, and panel dynamic spatial models. Recent econometric developments on intertemporal spatial models with rational expectations and flows data in trade theory will also be included. In terms of statistics, classical estimation, testing and inference are the main concerns, and we provide classical inference for the justification of Bayesian simulation approaches.
New Perspectives in Statistical Modeling and Data Analysis
Author: Salvatore Ingrassia
Publisher: Springer Science & Business Media
ISBN: 364211363X
Category : Mathematics
Languages : en
Pages : 576
Book Description
This volume provides recent research results in data analysis, classification and multivariate statistics and highlights perspectives for new scientific developments within these areas. Particular attention is devoted to methodological issues in clustering, statistical modeling and data mining. The volume also contains significant contributions to a wide range of applications such as finance, marketing, and social sciences. The papers in this volume were first presented at the 7th Conference of the Classification and Data Analysis Group (ClaDAG) of the Italian Statistical Society, held at the University of Catania, Italy.
Publisher: Springer Science & Business Media
ISBN: 364211363X
Category : Mathematics
Languages : en
Pages : 576
Book Description
This volume provides recent research results in data analysis, classification and multivariate statistics and highlights perspectives for new scientific developments within these areas. Particular attention is devoted to methodological issues in clustering, statistical modeling and data mining. The volume also contains significant contributions to a wide range of applications such as finance, marketing, and social sciences. The papers in this volume were first presented at the 7th Conference of the Classification and Data Analysis Group (ClaDAG) of the Italian Statistical Society, held at the University of Catania, Italy.
Loss Models
Author: Stuart A. Klugman
Publisher: John Wiley & Sons
ISBN: 0470391332
Category : Business & Economics
Languages : en
Pages : 758
Book Description
An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.
Publisher: John Wiley & Sons
ISBN: 0470391332
Category : Business & Economics
Languages : en
Pages : 758
Book Description
An update of one of the most trusted books on constructing and analyzing actuarial models Written by three renowned authorities in the actuarial field, Loss Models, Third Edition upholds the reputation for excellence that has made this book required reading for the Society of Actuaries (SOA) and Casualty Actuarial Society (CAS) qualification examinations. This update serves as a complete presentation of statistical methods for measuring risk and building models to measure loss in real-world events. This book maintains an approach to modeling and forecasting that utilizes tools related to risk theory, loss distributions, and survival models. Random variables, basic distributional quantities, the recursive method, and techniques for classifying and creating distributions are also discussed. Both parametric and non-parametric estimation methods are thoroughly covered along with advice for choosing an appropriate model. Features of the Third Edition include: Extended discussion of risk management and risk measures, including Tail-Value-at-Risk (TVaR) New sections on extreme value distributions and their estimation Inclusion of homogeneous, nonhomogeneous, and mixed Poisson processes Expanded coverage of copula models and their estimation Additional treatment of methods for constructing confidence regions when there is more than one parameter The book continues to distinguish itself by providing over 400 exercises that have appeared on previous SOA and CAS examinations. Intriguing examples from the fields of insurance and business are discussed throughout, and all data sets are available on the book's FTP site, along with programs that assist with conducting loss model analysis. Loss Models, Third Edition is an essential resource for students and aspiring actuaries who are preparing to take the SOA and CAS preliminary examinations. It is also a must-have reference for professional actuaries, graduate students in the actuarial field, and anyone who works with loss and risk models in their everyday work. To explore our additional offerings in actuarial exam preparation visit www.wiley.com/go/actuarialexamprep.
Econometric Analysis of Health Data
Author: Andrew M. Jones
Publisher: John Wiley & Sons
ISBN: 9780470841457
Category : Medical
Languages : en
Pages : 252
Book Description
Given extensive use of individual level data in Health Economics, it has become increasingly important to understand the microeconometric techniques available to applied researchers. The purpose of this book is to give readers convenient access to a collection of recent contributions that contain innovative applications of microeconometric methods to data on health and health care. Contributions are selected from papers presented at the European Workshops on Econometrics and Health Economics and published in Health Economics. Topics covered include: * Latent Variables * Unobservable heterogeneity and selection problems * Count data and survival analysis * Flexible and semiparametric estimators for limited dependent variables * Classical and simulation methods for panel data * Publication marks the tenth anniversary of the Workshop series. Doctoral students and researchers in health economics and microeconomics will find this book invaluable. Researchers in related fields such as labour economics and biostatistics will also find the content of use.
Publisher: John Wiley & Sons
ISBN: 9780470841457
Category : Medical
Languages : en
Pages : 252
Book Description
Given extensive use of individual level data in Health Economics, it has become increasingly important to understand the microeconometric techniques available to applied researchers. The purpose of this book is to give readers convenient access to a collection of recent contributions that contain innovative applications of microeconometric methods to data on health and health care. Contributions are selected from papers presented at the European Workshops on Econometrics and Health Economics and published in Health Economics. Topics covered include: * Latent Variables * Unobservable heterogeneity and selection problems * Count data and survival analysis * Flexible and semiparametric estimators for limited dependent variables * Classical and simulation methods for panel data * Publication marks the tenth anniversary of the Workshop series. Doctoral students and researchers in health economics and microeconomics will find this book invaluable. Researchers in related fields such as labour economics and biostatistics will also find the content of use.
Simulation-based Econometric Methods
Author: Christian Gouriéroux
Publisher: OUP Oxford
ISBN: 019152509X
Category : Business & Economics
Languages : en
Pages : 190
Book Description
This book introduces a new generation of statistical econometrics. After linear models leading to analytical expressions for estimators, and non-linear models using numerical optimization algorithms, the availability of high- speed computing has enabled econometricians to consider econometric models without simple analytical expressions. The previous difficulties presented by the presence of integrals of large dimensions in the probability density functions or in the moments can be circumvented by a simulation-based approach. After a brief survey of classical parametric and semi-parametric non-linear estimation methods and a description of problems in which criterion functions contain integrals, the authors present a general form of the model where it is possible to simulate the observations. They then move to calibration problems and the simulated analogue of the method of moments, before considering simulated versions of maximum likelihood, pseudo-maximum likelihood, or non-linear least squares. The general principle of indirect inference is presented and is then applied to limited dependent variable models and to financial series.
Publisher: OUP Oxford
ISBN: 019152509X
Category : Business & Economics
Languages : en
Pages : 190
Book Description
This book introduces a new generation of statistical econometrics. After linear models leading to analytical expressions for estimators, and non-linear models using numerical optimization algorithms, the availability of high- speed computing has enabled econometricians to consider econometric models without simple analytical expressions. The previous difficulties presented by the presence of integrals of large dimensions in the probability density functions or in the moments can be circumvented by a simulation-based approach. After a brief survey of classical parametric and semi-parametric non-linear estimation methods and a description of problems in which criterion functions contain integrals, the authors present a general form of the model where it is possible to simulate the observations. They then move to calibration problems and the simulated analogue of the method of moments, before considering simulated versions of maximum likelihood, pseudo-maximum likelihood, or non-linear least squares. The general principle of indirect inference is presented and is then applied to limited dependent variable models and to financial series.
Simulating Data with SAS
Author: Rick Wicklin
Publisher: SAS Institute
ISBN: 1612903320
Category : Computers
Languages : en
Pages : 363
Book Description
Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.
Publisher: SAS Institute
ISBN: 1612903320
Category : Computers
Languages : en
Pages : 363
Book Description
Data simulation is a fundamental technique in statistical programming and research. Rick Wicklin's Simulating Data with SAS brings together the most useful algorithms and the best programming techniques for efficient data simulation in an accessible how-to book for practicing statisticians and statistical programmers. This book discusses in detail how to simulate data from common univariate and multivariate distributions, and how to use simulation to evaluate statistical techniques. It also covers simulating correlated data, data for regression models, spatial data, and data with given moments. It provides tips and techniques for beginning programmers, and offers libraries of functions for advanced practitioners. As the first book devoted to simulating data across a range of statistical applications, Simulating Data with SAS is an essential tool for programmers, analysts, researchers, and students who use SAS software. This book is part of the SAS Press program.