Author: Jeremy Gray
Publisher: Simply Charly
ISBN: 1943657785
Category : Biography & Autobiography
Languages : en
Pages : 169
Book Description
“Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity. Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures Born to a poor Lutheran pastor in what is today the Federal Republic of Germany, Bernhard Riemann (1826-1866) was a child math prodigy who began studying for a degree in theology before formally committing to mathematics in 1846, at the age of 20. Though he would live for only another 20 years (he died of pleurisy during a trip to Italy), his seminal work in a number of key areas—several of which now bear his name—had a decisive impact on the shape of mathematics in the succeeding century and a half. In Simply Riemann, author Jeremy Gray provides a comprehensive and intellectually stimulating introduction to Riemann’s life and paradigm-defining work. Beginning with his early influences—in particular, his relationship with his renowned predecessor Carl Friedrich Gauss—Gray goes on to explore Riemann’s specific contributions to geometry, functions of a complex variable, prime numbers, and functions of a real variable, which opened the way to discovering the limits of the calculus. He shows how without Riemannian geometry, cosmology after Einstein would be unthinkable, and he illuminates the famous Riemann hypothesis, which many regard as the most important unsolved problem in mathematics today. With admirable concision and clarity, Simply Riemann opens the door on one of the most profound and original thinkers of the 19th century—a man who pioneered the concept of a multidimensional reality and who always saw his work as another way to serve God.
Simply Riemann
Author: Jeremy Gray
Publisher: Simply Charly
ISBN: 1943657785
Category : Biography & Autobiography
Languages : en
Pages : 169
Book Description
“Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity. Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures Born to a poor Lutheran pastor in what is today the Federal Republic of Germany, Bernhard Riemann (1826-1866) was a child math prodigy who began studying for a degree in theology before formally committing to mathematics in 1846, at the age of 20. Though he would live for only another 20 years (he died of pleurisy during a trip to Italy), his seminal work in a number of key areas—several of which now bear his name—had a decisive impact on the shape of mathematics in the succeeding century and a half. In Simply Riemann, author Jeremy Gray provides a comprehensive and intellectually stimulating introduction to Riemann’s life and paradigm-defining work. Beginning with his early influences—in particular, his relationship with his renowned predecessor Carl Friedrich Gauss—Gray goes on to explore Riemann’s specific contributions to geometry, functions of a complex variable, prime numbers, and functions of a real variable, which opened the way to discovering the limits of the calculus. He shows how without Riemannian geometry, cosmology after Einstein would be unthinkable, and he illuminates the famous Riemann hypothesis, which many regard as the most important unsolved problem in mathematics today. With admirable concision and clarity, Simply Riemann opens the door on one of the most profound and original thinkers of the 19th century—a man who pioneered the concept of a multidimensional reality and who always saw his work as another way to serve God.
Publisher: Simply Charly
ISBN: 1943657785
Category : Biography & Autobiography
Languages : en
Pages : 169
Book Description
“Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity. Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures Born to a poor Lutheran pastor in what is today the Federal Republic of Germany, Bernhard Riemann (1826-1866) was a child math prodigy who began studying for a degree in theology before formally committing to mathematics in 1846, at the age of 20. Though he would live for only another 20 years (he died of pleurisy during a trip to Italy), his seminal work in a number of key areas—several of which now bear his name—had a decisive impact on the shape of mathematics in the succeeding century and a half. In Simply Riemann, author Jeremy Gray provides a comprehensive and intellectually stimulating introduction to Riemann’s life and paradigm-defining work. Beginning with his early influences—in particular, his relationship with his renowned predecessor Carl Friedrich Gauss—Gray goes on to explore Riemann’s specific contributions to geometry, functions of a complex variable, prime numbers, and functions of a real variable, which opened the way to discovering the limits of the calculus. He shows how without Riemannian geometry, cosmology after Einstein would be unthinkable, and he illuminates the famous Riemann hypothesis, which many regard as the most important unsolved problem in mathematics today. With admirable concision and clarity, Simply Riemann opens the door on one of the most profound and original thinkers of the 19th century—a man who pioneered the concept of a multidimensional reality and who always saw his work as another way to serve God.
Simply Riemann
Author: Jeremy Gray
Publisher:
ISBN: 9781943657216
Category : Biography & Autobiography
Languages : en
Pages : 168
Book Description
Though little known outside of his field, Bernhard Riemann was one of the most important and influential mathematicians of the modern era. His early work prepared the way for Einstein's general theory of relativity, and his breakthroughs in geometry, topology, analysis, and number theory continue to inspire and challenge mathematicians today. In Simply Riemann, author Jeremy Gray takes us into the mind of a great mathematician, exploring the ideas beneath the technicalities, and providing an insightful portrait of a would-be pastor who found himself increasingly "called" by the abstract beauty of numbers.
Publisher:
ISBN: 9781943657216
Category : Biography & Autobiography
Languages : en
Pages : 168
Book Description
Though little known outside of his field, Bernhard Riemann was one of the most important and influential mathematicians of the modern era. His early work prepared the way for Einstein's general theory of relativity, and his breakthroughs in geometry, topology, analysis, and number theory continue to inspire and challenge mathematicians today. In Simply Riemann, author Jeremy Gray takes us into the mind of a great mathematician, exploring the ideas beneath the technicalities, and providing an insightful portrait of a would-be pastor who found himself increasingly "called" by the abstract beauty of numbers.
Prime Numbers and the Riemann Hypothesis
Author: Barry Mazur
Publisher: Cambridge University Press
ISBN: 1107101921
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Publisher: Cambridge University Press
ISBN: 1107101921
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Algebraic Functions
Author: Kenkichi Iwasawa
Publisher: American Mathematical Soc.
ISBN: 0821819690
Category : Mathematics
Languages : en
Pages : 314
Book Description
This is a translation of Iwasawa's 1973 book, Theory of Algebraic Functions originally published in Japanese. Because the book treats mainly the classical part of the theory of algebraic functions, emphasizing analytic methods, it provides an excellent introduction to the subject from the classical viewpoint. Directed at graduate students, the book requires some basic knowledge of algebra, topology, and functions of a complex variable.
Publisher: American Mathematical Soc.
ISBN: 0821819690
Category : Mathematics
Languages : en
Pages : 314
Book Description
This is a translation of Iwasawa's 1973 book, Theory of Algebraic Functions originally published in Japanese. Because the book treats mainly the classical part of the theory of algebraic functions, emphasizing analytic methods, it provides an excellent introduction to the subject from the classical viewpoint. Directed at graduate students, the book requires some basic knowledge of algebra, topology, and functions of a complex variable.
Prime Obsession
Author: John Derbyshire
Publisher: Joseph Henry Press
ISBN: 0309141257
Category : Science
Languages : en
Pages : 447
Book Description
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
Publisher: Joseph Henry Press
ISBN: 0309141257
Category : Science
Languages : en
Pages : 447
Book Description
In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
Meromorphic Dynamics: Volume 1
Author: Janina Kotus
Publisher: Cambridge University Press
ISBN: 1009215906
Category : Mathematics
Languages : en
Pages : 510
Book Description
This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.
Publisher: Cambridge University Press
ISBN: 1009215906
Category : Mathematics
Languages : en
Pages : 510
Book Description
This text, the first of two volumes, provides a comprehensive and self-contained introduction to a wide range of fundamental results from ergodic theory and geometric measure theory. Topics covered include: finite and infinite abstract ergodic theory, Young's towers, measure-theoretic Kolmogorov-Sinai entropy, thermodynamics formalism, geometric function theory, various kinds of conformal measures, conformal graph directed Markov systems and iterated functions systems, semi-local dynamics of analytic functions, and nice sets. Many examples are included, along with detailed explanations of essential concepts and full proofs, in what is sure to be an indispensable reference for both researchers and graduate students.
A Concise Introduction to the Theory of Integration
Author: Daniel W. Stroock
Publisher: Springer Science & Business Media
ISBN: 1475723008
Category : Mathematics
Languages : en
Pages : 193
Book Description
This little book is the outgrowth of a one semester course which I have taught for each of the past four years at M. 1. T. Although this class used to be one of the standard courses taken by essentially every first year gradu ate student of mathematics, in recent years (at least in those when I was the instructor), the clientele has shifted from first year graduate students of mathematics to more advanced graduate students in other disciplines. In fact, the majority of my students have been from departments of engi neering (especially electrical engineering) and most of the rest have been economists. Whether this state of affairs is a reflection on my teaching, the increased importance of mathematical analysis in other disciplines, the superior undergraduate preparation of students coming to M. 1. T in mathematics, or simply the lack of enthusiasm that these students have for analysis, I have preferred not to examine too closely. On the other hand, the situation did force me to do a certain amount of thinking about what constitutes an appropriate course for a group of non-mathematicians who are courageous (foolish?) enough to sign up for an introduction to in tegration theory offered by the department of mathematics. In particular, I had to figure out what to do about that vast body of material which, in standard mathematics offerings, is "assumed to have been covered in your advanced calculus course".
Publisher: Springer Science & Business Media
ISBN: 1475723008
Category : Mathematics
Languages : en
Pages : 193
Book Description
This little book is the outgrowth of a one semester course which I have taught for each of the past four years at M. 1. T. Although this class used to be one of the standard courses taken by essentially every first year gradu ate student of mathematics, in recent years (at least in those when I was the instructor), the clientele has shifted from first year graduate students of mathematics to more advanced graduate students in other disciplines. In fact, the majority of my students have been from departments of engi neering (especially electrical engineering) and most of the rest have been economists. Whether this state of affairs is a reflection on my teaching, the increased importance of mathematical analysis in other disciplines, the superior undergraduate preparation of students coming to M. 1. T in mathematics, or simply the lack of enthusiasm that these students have for analysis, I have preferred not to examine too closely. On the other hand, the situation did force me to do a certain amount of thinking about what constitutes an appropriate course for a group of non-mathematicians who are courageous (foolish?) enough to sign up for an introduction to in tegration theory offered by the department of mathematics. In particular, I had to figure out what to do about that vast body of material which, in standard mathematics offerings, is "assumed to have been covered in your advanced calculus course".
Classical Topics in Complex Function Theory
Author: Reinhold Remmert
Publisher: Springer Science & Business Media
ISBN: 1475729561
Category : Mathematics
Languages : en
Pages : 362
Book Description
An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
Publisher: Springer Science & Business Media
ISBN: 1475729561
Category : Mathematics
Languages : en
Pages : 362
Book Description
An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike
Sampling Theory, a Renaissance
Author: Götz E. Pfander
Publisher: Birkhäuser
ISBN: 3319197495
Category : Mathematics
Languages : en
Pages : 532
Book Description
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.
Publisher: Birkhäuser
ISBN: 3319197495
Category : Mathematics
Languages : en
Pages : 532
Book Description
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.
Algebraic Functions
Author: Gilbert Ames Bliss
Publisher: Courier Corporation
ISBN: 9780486495682
Category : Mathematics
Languages : en
Pages : 248
Book Description
This text surveys the approaches and basic results of all three classes of algebraic functions. Starting with a treatment of single-valued analytic functions, it introduces algebraic and rational functions and proceeds to the Riemann surface of an algebraic function, integrals of rational functions, and Abel's theorem. 1933 edition
Publisher: Courier Corporation
ISBN: 9780486495682
Category : Mathematics
Languages : en
Pages : 248
Book Description
This text surveys the approaches and basic results of all three classes of algebraic functions. Starting with a treatment of single-valued analytic functions, it introduces algebraic and rational functions and proceeds to the Riemann surface of an algebraic function, integrals of rational functions, and Abel's theorem. 1933 edition