Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
ISBN: 1470410168
Category : Mathematics
Languages : en
Pages : 180
Book Description
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
Shock Waves in Conservation Laws with Physical Viscosity
Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
ISBN: 1470410168
Category : Mathematics
Languages : en
Pages : 180
Book Description
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
Publisher: American Mathematical Soc.
ISBN: 1470410168
Category : Mathematics
Languages : en
Pages : 180
Book Description
The authors study the perturbation of a shock wave in conservation laws with physical viscosity. They obtain the detailed pointwise estimates of the solutions. In particular, they show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small but independent. The authors' assumptions on the viscosity matrix are general so that their results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. The authors' analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that the author can close the nonlinear term through Duhamel's principle.
Shock Waves in Conservation Laws with Physical Viscosity
Author: Tai-Ping Liu
Publisher:
ISBN: 9781470420321
Category : Conservation laws (Mathematics)
Languages : en
Pages : 168
Book Description
We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel's principle.
Publisher:
ISBN: 9781470420321
Category : Conservation laws (Mathematics)
Languages : en
Pages : 168
Book Description
We study the perturbation of a shock wave in conservation laws with physical viscosity. We obtain the detailed pointwise estimates of the solutions. In particular, we show that the solution converges to a translated shock profile. The strength of the perturbation and that of the shock are assumed to be small, but independent. Our assumptions on the viscosity matrix are general so that our results apply to the Navier-Stokes equations for the compressible fluid and the full system of magnetohydrodynamics, including the cases of multiple eigenvalues in the transversal fields, as long as the shock is classical. Our analysis depends on accurate construction of an approximate Green's function. The form of the ansatz for the perturbation is carefully constructed and is sufficiently tight so that we can close the nonlinear term through the Duhamel's principle.
Hyperbolic and Viscous Conservation Laws
Author: Tai-Ping Liu
Publisher: SIAM
ISBN: 0898714362
Category : Mathematics
Languages : en
Pages : 78
Book Description
An in-depth analysis of wave interactions for general systems of hyperbolic and viscous conservation laws.
Publisher: SIAM
ISBN: 0898714362
Category : Mathematics
Languages : en
Pages : 78
Book Description
An in-depth analysis of wave interactions for general systems of hyperbolic and viscous conservation laws.
Nonlinear Partial Differential Equations for Scientists and Engineers
Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Nonlinear Stability of Shock Waves for Viscous Conservation Laws
Author: Tai-Ping Liu
Publisher: American Mathematical Soc.
ISBN: 0821823299
Category : Mathematics
Languages : en
Pages : 117
Book Description
In this paper we establish the nonlinear stability of shock waves for viscous conservation laws. It is shown that when the initial data is a perturbation of viscous shock waves, then the solution converges to viscous shock waves, properly translated, as time tends to infinity.
Publisher: American Mathematical Soc.
ISBN: 0821823299
Category : Mathematics
Languages : en
Pages : 117
Book Description
In this paper we establish the nonlinear stability of shock waves for viscous conservation laws. It is shown that when the initial data is a perturbation of viscous shock waves, then the solution converges to viscous shock waves, properly translated, as time tends to infinity.
Hyperbolic Conservation Laws in Continuum Physics
Author: Constantine M. Dafermos
Publisher: Springer
ISBN: 3662494515
Category : Mathematics
Languages : en
Pages : 852
Book Description
OLD TEXT 4th Edition to be replaced: This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
Publisher: Springer
ISBN: 3662494515
Category : Mathematics
Languages : en
Pages : 852
Book Description
OLD TEXT 4th Edition to be replaced: This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
Hyperbolic and Viscous Conservation Laws
Author: Tai-Ping Liu
Publisher: SIAM
ISBN: 9780898719420
Category : Mathematics
Languages : en
Pages : 79
Book Description
Here is an in-depth, up-to-date analysis of wave interactions for general systems of hyperbolic and viscous conservation laws. This self-contained study of shock waves explains the new wave phenomena from both a physical and a mathematical standpoint. The analysis is useful for the study of various physical situations, including nonlinear elasticity, magnetohydrodynamics, multiphase flows, combustion, and classical gas dynamics shocks. The central issue throughout the book is the understanding of nonlinear wave interactions.
Publisher: SIAM
ISBN: 9780898719420
Category : Mathematics
Languages : en
Pages : 79
Book Description
Here is an in-depth, up-to-date analysis of wave interactions for general systems of hyperbolic and viscous conservation laws. This self-contained study of shock waves explains the new wave phenomena from both a physical and a mathematical standpoint. The analysis is useful for the study of various physical situations, including nonlinear elasticity, magnetohydrodynamics, multiphase flows, combustion, and classical gas dynamics shocks. The central issue throughout the book is the understanding of nonlinear wave interactions.
Numerical Methods for Conservation Laws
Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221
Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.
Viscous Profiles and Numerical Methods for Shock Waves
Author: Michael Shearer
Publisher: SIAM
ISBN: 9780898712834
Category : Science
Languages : en
Pages : 272
Book Description
One strongly represented theme is the power of ideas from dynamical systems that are being adapted and developed in the context of shock waves.
Publisher: SIAM
ISBN: 9780898712834
Category : Science
Languages : en
Pages : 272
Book Description
One strongly represented theme is the power of ideas from dynamical systems that are being adapted and developed in the context of shock waves.
Systems of Conservation Laws 1
Author: Denis Serre
Publisher: Cambridge University Press
ISBN: 9781139425414
Category : Mathematics
Languages : en
Pages : 290
Book Description
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations.
Publisher: Cambridge University Press
ISBN: 9781139425414
Category : Mathematics
Languages : en
Pages : 290
Book Description
Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws, describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self-contained, with large numbers of exercises and full discussion of all the ideas. This will make it ideal as a text for graduate courses in the area of partial differential equations.