Shock capturing and high-order methods for hyperbolic conservation laws PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Shock capturing and high-order methods for hyperbolic conservation laws PDF full book. Access full book title Shock capturing and high-order methods for hyperbolic conservation laws by Jan Glaubitz . Download full books in PDF and EPUB format.

Shock capturing and high-order methods for hyperbolic conservation laws

Shock capturing and high-order methods for hyperbolic conservation laws PDF Author: Jan Glaubitz
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832550844
Category : Mathematics
Languages : en
Pages : 270

Book Description
This thesis is concerned with the numerical treatment of hyperbolic conservation laws. These play an important role in describing many natural phenomena. Challenges in their theoretical as well as numerical study stem from the fact that spontaneous shock discontinuities can arise in their solutions, even in finite time and smooth initial states. Moreover, the numerical treatment of hyperbolic conservations laws involves many different fields from mathematics, physics, and computer science. As a consequence, this thesis also provides contributions to several different fields of research - which are still connected by numerical conservation laws, however. These contributions include, but are not limited to, the construction of stable high order quadrature rules for experimental data, the development of new stable numerical methods for conservation laws, and the investigation and design of shock capturing procedures as a means to stabilize high order numerical methods in the presence of (shock) discontinuities. Jan Glaubitz was born in Braunschweig, Germany, in 1990 and completed his mathematical studies (B.Sc., 2014, M.Sc., 2016, Dr. rer. nat., 2019) at TU Braunschweig. In 2016, he received awards from the German Mathematical Society (DMV) for his master's thesis as well as from the Society of Financial and Economic Mathematics of Braunschweig (VBFWM). In 2017, he was honored with the teaching award "LehrLEO" for the best tutorial at TU Braunschweig. Since 2020, he holds a position as a postdoctoral researcher at Dartmouth College, NH, USA.

Shock capturing and high-order methods for hyperbolic conservation laws

Shock capturing and high-order methods for hyperbolic conservation laws PDF Author: Jan Glaubitz
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832550844
Category : Mathematics
Languages : en
Pages : 270

Book Description
This thesis is concerned with the numerical treatment of hyperbolic conservation laws. These play an important role in describing many natural phenomena. Challenges in their theoretical as well as numerical study stem from the fact that spontaneous shock discontinuities can arise in their solutions, even in finite time and smooth initial states. Moreover, the numerical treatment of hyperbolic conservations laws involves many different fields from mathematics, physics, and computer science. As a consequence, this thesis also provides contributions to several different fields of research - which are still connected by numerical conservation laws, however. These contributions include, but are not limited to, the construction of stable high order quadrature rules for experimental data, the development of new stable numerical methods for conservation laws, and the investigation and design of shock capturing procedures as a means to stabilize high order numerical methods in the presence of (shock) discontinuities. Jan Glaubitz was born in Braunschweig, Germany, in 1990 and completed his mathematical studies (B.Sc., 2014, M.Sc., 2016, Dr. rer. nat., 2019) at TU Braunschweig. In 2016, he received awards from the German Mathematical Society (DMV) for his master's thesis as well as from the Society of Financial and Economic Mathematics of Braunschweig (VBFWM). In 2017, he was honored with the teaching award "LehrLEO" for the best tutorial at TU Braunschweig. Since 2020, he holds a position as a postdoctoral researcher at Dartmouth College, NH, USA.

Semi-implicit and Fully Implicit Shock-capturing Methods for Hyperbolic Conservation Laws with Stiff Source Terms

Semi-implicit and Fully Implicit Shock-capturing Methods for Hyperbolic Conservation Laws with Stiff Source Terms PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Book Description


High Order Shock Capturing Schemes for Hyperbolic Conservation Laws and the Application in Open Channel Flows

High Order Shock Capturing Schemes for Hyperbolic Conservation Laws and the Application in Open Channel Flows PDF Author: Chunfang Chen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


A Class of High Resolution Explicit and Implicit Shock-capturing Methods

A Class of High Resolution Explicit and Implicit Shock-capturing Methods PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 230

Book Description


High Order Accurate Shock Capturing Schemes for Hyperbolic Conservation Laws Based on a New Class of Limiters

High Order Accurate Shock Capturing Schemes for Hyperbolic Conservation Laws Based on a New Class of Limiters PDF Author: Universitat de València. Facultat de Ciències Matemàtiques
Publisher:
ISBN:
Category :
Languages : en
Pages : 165

Book Description


Front-tracking Shock-capturing Method for Two Fluids

Front-tracking Shock-capturing Method for Two Fluids PDF Author: Mehdi Vahab
Publisher:
ISBN: 9781321213164
Category :
Languages : en
Pages :

Book Description
This dissertation presents a new high-order front tracking method for two-phase hyperbolic systems of conservation laws separated by a contact discontinuity. A review of existing methods for moving and/or irregular boundaries shows the significance of accurate geometry data and flux calculation near the interface to achieve a high order method. A general method for hyperbolic systems of conservation laws is presented along with the implementations of numerical methods for simulations of gas dynamics in 2-D using the Euler equations. Convergence tests show the new method is second order accurate for smooth solutions and first order in presence of shocks. Also the new method is used for simulation of Richtmyer-Meshkov instability, in which results are in agreement with both theoretical andexperimental approaches.

Shock Capturing

Shock Capturing PDF Author: Institute for Computer Applications in Science and Engineering
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Book Description


Polynomial Chaos Methods for Hyperbolic Partial Differential Equations

Polynomial Chaos Methods for Hyperbolic Partial Differential Equations PDF Author: Mass Per Pettersson
Publisher: Springer
ISBN: 3319107143
Category : Technology & Engineering
Languages : en
Pages : 217

Book Description
This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dimension and one uncertain parameter as its extension is conceptually straightforward. The numerical methods designed guarantee that the solutions to the uncertainty quantification systems will converge as the mesh size goes to zero. Examples from computational fluid dynamics are presented together with numerical methods suitable for the problem at hand: stable high-order finite-difference methods based on summation-by-parts operators for smooth problems, and robust shock-capturing methods for highly nonlinear problems. Academics and graduate students interested in computational fluid dynamics and uncertainty quantification will find this book of interest. Readers are expected to be familiar with the fundamentals of numerical analysis. Some background in stochastic methods is useful but notnecessary.

High-resolution Shock-capturing Schemes for Inviscid and Viscous Hypersonic Flows

High-resolution Shock-capturing Schemes for Inviscid and Viscous Hypersonic Flows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Book Description


Shock-Capturing Methods for Free-Surface Shallow Flows

Shock-Capturing Methods for Free-Surface Shallow Flows PDF Author: E. F. Toro
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 336

Book Description
The first of its kind in the field, this title examines the use of modern, shock-capturing finite volume numerical methods, in the solution of partial differential equations associated with free-surface flows, which satisfy the shallow-water type assumption (including shallow water flows, dense gases and mixtures of materials as special samples). Starting with a general presentation of the governing equations for free-surface shallow flows and a discussion of their physical applicability, the book goes on to analyse the mathematical properties of the equations, in preparation for the presentation of the exact solution of the Riemann problem for wet and dry beds. After a general introduction to the finite volume approach, several chapters are then devoted to describing a variety of modern shock-capturing finite volume numerical methods, including Godunov methods of the upwind and centred type. Approximate Riemann solvers following various approaches are studied in detail as is their use in the Godunov approach for constructing low and high-order upwind TVD methods. Centred TVD schemes are also presented. Two chapters are then devoted to practical applications. The book finishes with an overview of potential practical applications of the methods studied, along with appropriate reference to sources of further information. Features include: * Algorithmic and practical presentation of the methods * Practical applications such as dam-break modelling and the study of bore reflection patterns in two space dimensions * Sample computer programs and accompanying numerical software (details available at www.numeritek.com) The book is suitable for teaching postgraduate students of civil, mechanical, hydraulic and environmental engineering, meteorology, oceanography, fluid mechanics and applied mathematics. Selected portions of the material may also be useful in teaching final year undergraduate students in the above disciplines. The contents will also be of interest to research scientists and engineers in academia and research and consultancy laboratories.