Shear Capacity of in Service Prestressed Concrete Bridge Girders PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Shear Capacity of in Service Prestressed Concrete Bridge Girders PDF full book. Access full book title Shear Capacity of in Service Prestressed Concrete Bridge Girders by Paul Barr. Download full books in PDF and EPUB format.

Shear Capacity of in Service Prestressed Concrete Bridge Girders

Shear Capacity of in Service Prestressed Concrete Bridge Girders PDF Author: Paul Barr
Publisher:
ISBN:
Category : Girders
Languages : en
Pages : 244

Book Description
The design procedure to calculate the shear capacity of bridge girders that was used forty years ago is very different than those procedures that are recommended in the current AASHTO LRFD Specifications. As a result, many bridge girders that were built forty years ago do not meet current design standards, and in some cases warrant replacement due to insufficient calculated shear capacity. However despite this insufficient calculated capacity, these bridge girders have been found to function adequately in service with minimal signs of distress. The objective of this research was to investigate the actual in service capacity of prestressed concrete girders that have been in service over an extended period of time.

Shear Capacity of in Service Prestressed Concrete Bridge Girders

Shear Capacity of in Service Prestressed Concrete Bridge Girders PDF Author: Paul Barr
Publisher:
ISBN:
Category : Girders
Languages : en
Pages : 244

Book Description
The design procedure to calculate the shear capacity of bridge girders that was used forty years ago is very different than those procedures that are recommended in the current AASHTO LRFD Specifications. As a result, many bridge girders that were built forty years ago do not meet current design standards, and in some cases warrant replacement due to insufficient calculated shear capacity. However despite this insufficient calculated capacity, these bridge girders have been found to function adequately in service with minimal signs of distress. The objective of this research was to investigate the actual in service capacity of prestressed concrete girders that have been in service over an extended period of time.

Shear Capacity of in Service Prestressed Concrete Bridge Girders

Shear Capacity of in Service Prestressed Concrete Bridge Girders PDF Author:
Publisher:
ISBN:
Category : Concrete beams
Languages : en
Pages : 249

Book Description
The design of prestressed concrete bridge girders has changed significantly over the past several decades. Specifically, the design procedure to calculate the shear capacity of bridge girders that was used forty years ago is very different than those procedures that are recommended in the current AASHTO LRFD Specifications. As a result, many bridge girders that were built forty years ago do not meet current design standards, and in some cases warrant replacement due to insufficient calculated shear capacity. However, despite this insufficient calculated capacity, these bridge girders have been found to function adequately in service with minimal signs of distress. The objective of this research was to investigate the actual in service capacity of prestressed concrete girders that have been in service over an extended period of time. The actual capacity was compared with calculated values using the AASHTO LRFD Specifications.

Ultimate Shear Capacity and Residual Prestress Force of Full-scale, Forty-one-year-old Prestressed-concrete Girders

Ultimate Shear Capacity and Residual Prestress Force of Full-scale, Forty-one-year-old Prestressed-concrete Girders PDF Author: Parry Osborn
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 162

Book Description
The ultimate shear capacity of prestressed concrete beams is difficult to predict accurately, especially after being in service for an extended period of time. The Utah Department of Transportation asked researchers at Utah State University to experimentally determine the existing shear capacity of 41-year-old prestressed, decommissioned concrete bridge girders and then provide recommendations on how to increase that ultimate shear capacity. This thesis presents the research findings that relate to the existing shear capacity of the prestressed concrete girders. Eight AASHTO Type II bridge girders were tested up to failure by applying external loads near the supports to determine their ultimate shear capacities. The measured results were then compared to calculated values obtained using the AASHTO LRFD bridge design code, and the ACI 318-08 design code. Prestress losses were also measured by means of a cracking test and then compared to values calculated according to the AASHTO prestress loss equations. Both the ultimate shear capacities and the residual prestress forces were used to evaluate the girders after being in service for more than 40 years.

Discrepancies in Shear Strength of Prestressed Beams with Different Specifications

Discrepancies in Shear Strength of Prestressed Beams with Different Specifications PDF Author: Ozer Dereli
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 242

Book Description
Although Mn/DOT inspection reports indicate that prestressed concrete bridge girders in service do not show signs of shear distress, girders rated with the Virtis-BRASS rating tool and Load Factor Rating (LFR) have indicated that a number of the girders have capacities lower than design level capacities. One of the reasons for the discrepancy was suspected to be conservatism of the rating methods (i.e., LFR). Other suspected reasons included potential flaws in the rating tools used by Mn/DOT (i.e., Virtis-BRASS software) including neglecting possible additional shear capacity parameters (e.g., end blocks). As a consequence, the rating methods have made it difficult to discern the cases for which shear capacity may be a real concern. In order to identify the reasons for the discrepancies and inconsistency in rating results relative to observed performance of the prestressed bridge girders, an analytical research program was conducted. The report provides a brief description of the models that provide the basis for the AASHTO shear design provisions and descriptions of the provisions through the 2002 AASHTO Standard specifications. This is followed by a description of the Virtis-BRASS rating tool, which was verified with example bridges provided by Mn/DOT. To investigate prestressed bridge girders within the inventory that might be most at risk for being undercapacity for shear, 54 girders were selected from the inventory for further evaluation. Some of the 54 girders were found to have larger stirrup spacings than required at the time of design. These girders were subsequently rated and evaluated per the 2002 AASHTO Standard Specifications to determine the adequacy of the designs based on the LFR inventory and operating rating methods. Potential sources for increased shear capacity were identified and reviewed.

Shear Reinforcement Requirements for High-Strength Concrete Bridge Girders

Shear Reinforcement Requirements for High-Strength Concrete Bridge Girders PDF Author: J.A. Ramirez
Publisher:
ISBN: 9781622601844
Category :
Languages : en
Pages :

Book Description


Shear Capacity of Prestressed Concrete Beams

Shear Capacity of Prestressed Concrete Beams PDF Author: Brian Richard Runzel
Publisher:
ISBN:
Category : Concrete bridges
Languages : en
Pages : 237

Book Description
The shear provisions of the American Association of State Highway and Transportation Officials bridge design code have changed significantly in recent years. The 2004 Load and Resistance Factor Design (LRFD) and 2002 Standard shear provisions for the design of prestressed concrete bridge girders typically require more shear reinforcement than the 1979 Interim shear provisions. The purpose of this research was to determine whether or not bridge girders designed according to the 1979 interim shear provisions were underdesigned for shear and develop a method to identify potentially underdesigned girders. Two shear capacity tests were performed on opposite ends of a bridge girder removed from Mn/DOT Bridge No. 73023. The stirrup spacing in the girder suggested it was designed according to the 1979 Interim shear provisions. The results from the shear tests indicated the girder was capable of holding the required shear demand because the applied shear at failure for both tests was larger than the factored shear strength required by the 2004 LRFD HL-93 and 2002 Standard HS20-44 loading. The results of a parametric study showed that girders designed using the 1979 Interim were most likely to be underdesigned for shear near the support and that the girders most likely to be underdesigned in this region had smaller length to girder spacing ratios.

Prestress Losses in Pretensioned High-strength Concrete Bridge Girders

Prestress Losses in Pretensioned High-strength Concrete Bridge Girders PDF Author: Maher K. Tadros
Publisher: Transportation Research Board
ISBN: 030908766X
Category : Technology & Engineering
Languages : en
Pages : 73

Book Description
"The HCM includes three printed volumes (Volumes 1-3) that can be purchased from the Transportation Research Board in print and electronic formats. Volume 4 is a free online resource that supports the rest of the manual. It includes: Supplemental chapters 25-38, providing additional details of the methodologies described in the Volume 1-3 chapters, example problems, and other resources; A technical reference library providing access to a significant portion of the research supporting HCM methods; Two applications guides demonstrating how the HCM can be applied to planning-level analysis and a variety of traffic operations applications; Interpretations, updates, and errata for the HCM (as they are developed);A discussion forum allowing HCM users to ask questions and collaborate on HCM-related matters; and Notifications of chapter updates, active discussions, and more via an optional e-mail notification feature."--Publisher.

Anchorage-controlled Shear Capacity of Prestressed Concrete Bridge Girders

Anchorage-controlled Shear Capacity of Prestressed Concrete Bridge Girders PDF Author: David Philip Langefeld
Publisher:
ISBN:
Category :
Languages : en
Pages : 290

Book Description
As part of the ongoing research on shear at the Phil M. Ferguson Structural Engineering Laboratory (FSEL) located at The University of Texas at Austin, the anchorage controlled shear capacity of prestressed concrete bridge girders was in this research studied in two distinct ways, experimentally and analytically. The results of this research are an important step towards improving understanding of strand anchorage related issues. For the experimental program, two full-scale Tx46 prestressed concrete bridge girders were fabricated at FSEL. The Tx46 girders were topped with a concrete, composite deck. Both ends of the two girders were instrumented and tested. For the analytical program, a new Anchorage Evaluation Database (AEDB) was developed, by filtering and expanding the University of Texas Prestressed Concrete Shear Database (UTPCSDB), and then evaluated. The AEDB contained 72 shear tests, of which 25 were anchorage failures and 47 were shear failures. The results and analysis from the experimental and analytical programs generated the following three main conclusions: (1) A reasonable percentage of debonding in Tx Girders does not have a marked impact on girder shear capacity calculated using the 2010 AASHTO LRFD General Procedure. (2) The AASHTO anchorage equation is conservative but not accurate. In other words, this equation cannot be used to accurately differentiate between a shear failure and an anchorage failure. In regards to conservativeness, anchorage failures in AASHTO-type girders may lead to unconservative results with respect to the 2010 AASHTO LRFD General Procedure. (3) The 2010 AASHTO anchorage resistance model and its corresponding equation do not apply to Tx Girders. Because of the Tx Girders' wider bottom flange, cracks do not propagate across the strands as they do in AASHTO-type girders. This fact yields overly conservative results for Tx Girders with respect to AASHTO Equation 5.8.3.5-1. In summary, this research uncovered the short-sided nature of the AASHTO anchorage design method. Given its short-comings, there is an obvious need for a validated, comprehensive, and rational approach to anchorage design that considers strength and serviceability. To appropriately develop this method, additional full-scale experimental testing is needed to expand the AEDB, as currently there are not enough tests to distinguish major, general trends and variables. Any future additional research would be expected to further validate and expand the significant findings that this research has produced and so take the next step toward safer, more-efficient bridge designs.

Evaluation and Repair Procedures for Precast/prestressed Concrete Girders with Longitudinal Cracking in the Web

Evaluation and Repair Procedures for Precast/prestressed Concrete Girders with Longitudinal Cracking in the Web PDF Author: Maher K. Tadros
Publisher: Transportation Research Board
ISBN: 0309118352
Category : Technology & Engineering
Languages : en
Pages : 76

Book Description
This report establishes a user's manual for the acceptance, repair, or rejection of precast/prestressed concrete girders with longitudinal web cracking. The report also proposes revisions to the AASHTO LRFD Bridge Design Specifications and provides recommendations to develop improved crack control reinforcement details for use in new girders. The material in this report will be of immediate interest to bridge engineers.

Shear and Flexural Capacity of High Strength Prestressed Concrete Bridge Girders

Shear and Flexural Capacity of High Strength Prestressed Concrete Bridge Girders PDF Author: Arek Tilmann Higgs
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description