Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 9780521848046
Category : Science
Languages : en
Pages : 376
Book Description
Publisher Description
Fundamentals of Multiphase Flow
Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 9780521848046
Category : Science
Languages : en
Pages : 376
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521848046
Category : Science
Languages : en
Pages : 376
Book Description
Publisher Description
The Drag and Shape of Air Bubbles Moving in Liquids
Author: Benjamin Rosenberg
Publisher:
ISBN:
Category : Air bubbles in liquids
Languages : en
Pages : 62
Book Description
Publisher:
ISBN:
Category : Air bubbles in liquids
Languages : en
Pages : 62
Book Description
Bubbles, Drops, and Particles
Author: R. Clift
Publisher: Courier Corporation
ISBN: 0486317749
Category : Science
Languages : en
Pages : 402
Book Description
This volume offers a unified treatment and critical review of the literature related to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. 1978 edition.
Publisher: Courier Corporation
ISBN: 0486317749
Category : Science
Languages : en
Pages : 402
Book Description
This volume offers a unified treatment and critical review of the literature related to the fluid dynamics, heat transfer, and mass transfer of single bubbles, drops, and particles. 1978 edition.
Bubbles, Drops, and Particles in Non-Newtonian Fluids
Author: R.P. Chhabra
Publisher: CRC Press
ISBN: 1420015389
Category : Science
Languages : en
Pages : 801
Book Description
Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multipha
Publisher: CRC Press
ISBN: 1420015389
Category : Science
Languages : en
Pages : 801
Book Description
Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multipha
Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions
Author: Liang-Shih Fan
Publisher: Butterworth-Heinemann
ISBN: 1483289508
Category : Science
Languages : en
Pages : 380
Book Description
This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.
Publisher: Butterworth-Heinemann
ISBN: 1483289508
Category : Science
Languages : en
Pages : 380
Book Description
This book is devoted to a fundamental understanding of the fluid dynamic nature of a bubble wake, more specifically the primary wake, in liquids and liquid-solid suspensions, an dto the role it plays in various important flow phenomena of multiphase systems. Examples of these phenomena are liquid/solids mixing, bubble coalescence and disintergration, particle entrainment to the freeboard, and bed contraction.
Particles, Bubbles & Drops
Author: Efstathios Michaelides
Publisher: World Scientific
ISBN: 9812566473
Category : Science
Languages : en
Pages : 425
Book Description
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.
Publisher: World Scientific
ISBN: 9812566473
Category : Science
Languages : en
Pages : 425
Book Description
The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.
Adhesion Science and Engineering
Author:
Publisher: Elsevier
ISBN: 0080525989
Category : Science
Languages : en
Pages : 2020
Book Description
The Mechanics of Adhesion shows that adhesion science and technology is inherently an interdisciplinary field, requiring fundamental understanding of mechanics, surfaces, and materials. This volume comprises 19 chapters. Starting with a background and introduction to stress transfer principles; fracture mechanics and singularities; and an energy approach to debonding, the volume continues with analysis of structural lap and butt joint configurations. It then continues with discussions of test methods for strength and constitutive properties; fracture; peel; coatings, the case of adhesion to a single substrate; elastomeric adhesives such as sealants. The role of mechanics in determining the locus of failure in bonded joints is discussed, followed by a chapter on rheology relevant to adhesives and sealants. Pressure sensitive adhesive performance; the principles of tack and tack measurements; and contact mechanics relevant to wetting and surface energy measurements are then covered. The volume concludes with sections on fibermatrix bonding and reinforcement; durability considerations for adhesive bonds; ultrasonic non-destructive evaluation of adhesive bonds; and design of adhesive bonds from a strength perspective. This book will be of interest to practitioners in the fields of engineering and to those with an interest in adhesion science.
Publisher: Elsevier
ISBN: 0080525989
Category : Science
Languages : en
Pages : 2020
Book Description
The Mechanics of Adhesion shows that adhesion science and technology is inherently an interdisciplinary field, requiring fundamental understanding of mechanics, surfaces, and materials. This volume comprises 19 chapters. Starting with a background and introduction to stress transfer principles; fracture mechanics and singularities; and an energy approach to debonding, the volume continues with analysis of structural lap and butt joint configurations. It then continues with discussions of test methods for strength and constitutive properties; fracture; peel; coatings, the case of adhesion to a single substrate; elastomeric adhesives such as sealants. The role of mechanics in determining the locus of failure in bonded joints is discussed, followed by a chapter on rheology relevant to adhesives and sealants. Pressure sensitive adhesive performance; the principles of tack and tack measurements; and contact mechanics relevant to wetting and surface energy measurements are then covered. The volume concludes with sections on fibermatrix bonding and reinforcement; durability considerations for adhesive bonds; ultrasonic non-destructive evaluation of adhesive bonds; and design of adhesive bonds from a strength perspective. This book will be of interest to practitioners in the fields of engineering and to those with an interest in adhesion science.
Fluid Dynamics of Particles, Drops, and Bubbles
Author: Eric Loth
Publisher: Cambridge University Press
ISBN: 1009365401
Category : Science
Languages : en
Pages : 574
Book Description
A modern presentation of multiphase flow, from basic principles to state-of-the-art research. Explains dispersed fluid dynamics for bubbles, drops, or solid particles, incorporating detailed theory, experiments, simulations, and models while considering applications and recent cutting-edge advances. The book demonstrates the importance of multiphase flow in engineering and natural systems, considering particle size distributions, shapes and trajectories as well as deformation of fluid particles and multiphase flow numerical methods. The scope of the book also includes coupling physics between particles and turbulence through dispersion and modulation, and specific phenomena such as gravitational settling and collisions for solid particles, drops and bubbles. Featuring over eighty homework problems for each of the primary chapters, including theory-based and engineering application questions. The comprehensive coverage will give the reader a solid grounding for multiphase flow research and design, applicable to current and future engineering. This is an ideal resource for graduate students, researchers and professionals.
Publisher: Cambridge University Press
ISBN: 1009365401
Category : Science
Languages : en
Pages : 574
Book Description
A modern presentation of multiphase flow, from basic principles to state-of-the-art research. Explains dispersed fluid dynamics for bubbles, drops, or solid particles, incorporating detailed theory, experiments, simulations, and models while considering applications and recent cutting-edge advances. The book demonstrates the importance of multiphase flow in engineering and natural systems, considering particle size distributions, shapes and trajectories as well as deformation of fluid particles and multiphase flow numerical methods. The scope of the book also includes coupling physics between particles and turbulence through dispersion and modulation, and specific phenomena such as gravitational settling and collisions for solid particles, drops and bubbles. Featuring over eighty homework problems for each of the primary chapters, including theory-based and engineering application questions. The comprehensive coverage will give the reader a solid grounding for multiphase flow research and design, applicable to current and future engineering. This is an ideal resource for graduate students, researchers and professionals.
Hydrodynamics and Transport Processes of Inverse Bubbly Flow
Author: Subrata Kumar Majumder
Publisher: Elsevier
ISBN: 012803288X
Category : Science
Languages : en
Pages : 464
Book Description
Hydrodynamics and Transport Processes of Inverse Bubbly Flow provides the science and fundamentals behind hydrodynamic characteristics, including flow regimes, gas entrainment, pressure drop, holdup and mixing characteristics, bubble size distribution, and the interfacial area of inverse bubble flow regimes. Special attention is given to mass and heat transfer. This book is an indispensable reference for researchers in academia and industry working in chemical and biochemical engineering. Hydrodynamics and Transport Processes of Inverse Bubbly Flow helps facilitate a better understanding of the phenomena of multiphase flow systems as used in chemical and biochemical industries. - A first book in the market dedicated to the hydrodynamics of inverse bubbly flows - Includes fundamentals of conventional and inverse bubble columns for different hydrodynamic parameters - Includes recommendations for future applications of bubble flows
Publisher: Elsevier
ISBN: 012803288X
Category : Science
Languages : en
Pages : 464
Book Description
Hydrodynamics and Transport Processes of Inverse Bubbly Flow provides the science and fundamentals behind hydrodynamic characteristics, including flow regimes, gas entrainment, pressure drop, holdup and mixing characteristics, bubble size distribution, and the interfacial area of inverse bubble flow regimes. Special attention is given to mass and heat transfer. This book is an indispensable reference for researchers in academia and industry working in chemical and biochemical engineering. Hydrodynamics and Transport Processes of Inverse Bubbly Flow helps facilitate a better understanding of the phenomena of multiphase flow systems as used in chemical and biochemical industries. - A first book in the market dedicated to the hydrodynamics of inverse bubbly flows - Includes fundamentals of conventional and inverse bubble columns for different hydrodynamic parameters - Includes recommendations for future applications of bubble flows
An Introduction to Transport Phenomena in Materials Engineering
Author: David R. Gaskell
Publisher: CRC Press
ISBN: 1000996301
Category : Science
Languages : en
Pages : 614
Book Description
This book elucidates the important role of conduction, convection, and radiation heat transfer, mass transport in solids and fluids, and internal and external fluid flow in the behavior of materials processes. These phenomena are critical in materials engineering because of the connection of transport to the evolution and distribution of microstructural properties during processing. From making choices in the derivation of fundamental conservation equations, to using scaling (order-of-magnitude) analysis showing relationships among different phenomena, to giving examples of how to represent real systems by simple models, the book takes the reader through the fundamentals of transport phenomena applied to materials processing. Fully updated, this third edition of a classic textbook offers a significant shift from the previous editions in the approach to this subject, representing an evolution incorporating the original ideas and extending them to a more comprehensive approach to the topic. FEATURES Introduces order-of-magnitude (scaling) analysis and uses it to quickly obtain approximate solutions for complicated problems throughout the book Focuses on building models to solve practical problems Adds new sections on non-Newtonian flows, turbulence, and measurement of heat transfer coefficients Offers expanded sections on thermal resistance networks, transient heat transfer, two-phase diffusion mass transfer, and flow in porous media Features more homework problems, mostly on the analysis of practical problems, and new examples from a much broader range of materials classes and processes, including metals, ceramics, polymers, and electronic materials Includes homework problems for the review of the mathematics required for a course based on this book and connects the theory represented by mathematics with real-world problems This book is aimed at advanced engineering undergraduates and students early in their graduate studies, as well as practicing engineers interested in understanding the behavior of heat and mass transfer and fluid flow during materials processing. While it is designed primarily for materials engineering education, it is a good reference for practicing materials engineers looking for insight into phenomena controlling their processes. A solutions manual, lecture slides, and figure slides are available for qualifying adopting professors.
Publisher: CRC Press
ISBN: 1000996301
Category : Science
Languages : en
Pages : 614
Book Description
This book elucidates the important role of conduction, convection, and radiation heat transfer, mass transport in solids and fluids, and internal and external fluid flow in the behavior of materials processes. These phenomena are critical in materials engineering because of the connection of transport to the evolution and distribution of microstructural properties during processing. From making choices in the derivation of fundamental conservation equations, to using scaling (order-of-magnitude) analysis showing relationships among different phenomena, to giving examples of how to represent real systems by simple models, the book takes the reader through the fundamentals of transport phenomena applied to materials processing. Fully updated, this third edition of a classic textbook offers a significant shift from the previous editions in the approach to this subject, representing an evolution incorporating the original ideas and extending them to a more comprehensive approach to the topic. FEATURES Introduces order-of-magnitude (scaling) analysis and uses it to quickly obtain approximate solutions for complicated problems throughout the book Focuses on building models to solve practical problems Adds new sections on non-Newtonian flows, turbulence, and measurement of heat transfer coefficients Offers expanded sections on thermal resistance networks, transient heat transfer, two-phase diffusion mass transfer, and flow in porous media Features more homework problems, mostly on the analysis of practical problems, and new examples from a much broader range of materials classes and processes, including metals, ceramics, polymers, and electronic materials Includes homework problems for the review of the mathematics required for a course based on this book and connects the theory represented by mathematics with real-world problems This book is aimed at advanced engineering undergraduates and students early in their graduate studies, as well as practicing engineers interested in understanding the behavior of heat and mass transfer and fluid flow during materials processing. While it is designed primarily for materials engineering education, it is a good reference for practicing materials engineers looking for insight into phenomena controlling their processes. A solutions manual, lecture slides, and figure slides are available for qualifying adopting professors.