Author: Christoph Glocker
Publisher: Springer Science & Business Media
ISBN: 3540444793
Category : Science
Languages : en
Pages : 222
Book Description
As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality.
Set-Valued Force Laws
Author: Christoph Glocker
Publisher: Springer Science & Business Media
ISBN: 3540444793
Category : Science
Languages : en
Pages : 222
Book Description
As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality.
Publisher: Springer Science & Business Media
ISBN: 3540444793
Category : Science
Languages : en
Pages : 222
Book Description
As one of the oldest natural sciences, mechanics occupies a certain pioneering role in determining the development of exact sciences through its interaction with mathematics. As a matter of fact, there is hardly an area in mathematics that hasn't found an application of some form in mechanics. It is thus almost inevitable that theoretical methods in mechanics are highly developed and laid out on different levels of abstraction. With the spread of digital processors this goes as far as the implementation in commercial computer codes, where the user is merely con fronted on the surface with the processes that run in the background, i. e. mechan ics as such: in teaching and research, as well as in the context of industry, me chanics is much more, and must remain much more than the mere production of data with the help of a processor. Mechanics, as it is talked about here, tradition ally includes a wide spectrum, ranging from applied mechanics, analytical and technical mechanics to modeling. and experimental mechanics, as well as technical realization. It also includes the subdisciplines of rigid body mechanics, continuum mechanics, or fluid mechanics, to mention only a few. One of the fundamental and most important concepts used by nearly all natural sciences is the concept of linearization, which assumes the differentiability of mappings. As a matter of fact, all of classical mechanics is based on the avail ability of this quality.
Dynamics and Bifurcations of Non-Smooth Mechanical Systems
Author: Remco I. Leine
Publisher: Springer Science & Business Media
ISBN: 3540443983
Category : Mathematics
Languages : en
Pages : 245
Book Description
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Publisher: Springer Science & Business Media
ISBN: 3540443983
Category : Mathematics
Languages : en
Pages : 245
Book Description
This monograph combines the knowledge of both the field of nonlinear dynamics and non-smooth mechanics, presenting a framework for a class of non-smooth mechanical systems using techniques from both fields. The book reviews recent developments, and opens the field to the nonlinear dynamics community. This book addresses researchers and graduate students in engineering and mathematics interested in the modelling, simulation and dynamics of non-smooth systems and nonlinear dynamics.
Numerics of Unilateral Contacts and Friction
Author: Christian Studer
Publisher: Springer Science & Business Media
ISBN: 3642011004
Category : Technology & Engineering
Languages : en
Pages : 182
Book Description
Mechanics provides the link between mathematics and practical engineering app- cations. It is one of the oldest sciences, and many famous scientists have left and will leave their mark in this fascinating ?eld of research. Perhaps one of the most prominentscientists in mechanics was Sir Isaac Newton, who with his “laws of - tion” initiated the description of mechanical systems by differential equations. And still today, more than 300 years after Newton, this mathematical concept is more actual than ever. The rising computer power and the development of numerical solvers for diff- ential equations allowed engineersall over the world to predict the behavior of their physical systems fast and easy in an numerical way. And the trend to computational simulation methods is still further increasing, not only in mechanics, but practically in all branches of science. Numerical simulation will probablynot solve the world’s engineering problems, but it will help for a better understanding of the mechanisms of our models.
Publisher: Springer Science & Business Media
ISBN: 3642011004
Category : Technology & Engineering
Languages : en
Pages : 182
Book Description
Mechanics provides the link between mathematics and practical engineering app- cations. It is one of the oldest sciences, and many famous scientists have left and will leave their mark in this fascinating ?eld of research. Perhaps one of the most prominentscientists in mechanics was Sir Isaac Newton, who with his “laws of - tion” initiated the description of mechanical systems by differential equations. And still today, more than 300 years after Newton, this mathematical concept is more actual than ever. The rising computer power and the development of numerical solvers for diff- ential equations allowed engineersall over the world to predict the behavior of their physical systems fast and easy in an numerical way. And the trend to computational simulation methods is still further increasing, not only in mechanics, but practically in all branches of science. Numerical simulation will probablynot solve the world’s engineering problems, but it will help for a better understanding of the mechanisms of our models.
Multibody Dynamics with Unilateral Contacts
Author: Friedrich Pfeiffer
Publisher: Springer Science & Business Media
ISBN: 9783211833308
Category : Computers
Languages : en
Pages : 274
Book Description
The volume introduces basic concepts necessary for a modern treatment of inequality problems in finite degree of freedom dynamics. Tools from convex analysis, by now well established in non-smooth mechanics, are used to formulate the constitutive equations and impact laws. The lectures cover a broad area of non-smooth dynamics from primal and dual energy functions in variational and differential form to application problems as chimney dampers or vibration conveyors. This includes frictional oscillations with bifurcation scenarios as well as analogies to small displacement quasi-static problems. The course is on an advanced level, designed primarily for postgraduate students, but should also be of value for scientists working on dynamic complementarity problems.
Publisher: Springer Science & Business Media
ISBN: 9783211833308
Category : Computers
Languages : en
Pages : 274
Book Description
The volume introduces basic concepts necessary for a modern treatment of inequality problems in finite degree of freedom dynamics. Tools from convex analysis, by now well established in non-smooth mechanics, are used to formulate the constitutive equations and impact laws. The lectures cover a broad area of non-smooth dynamics from primal and dual energy functions in variational and differential form to application problems as chimney dampers or vibration conveyors. This includes frictional oscillations with bifurcation scenarios as well as analogies to small displacement quasi-static problems. The course is on an advanced level, designed primarily for postgraduate students, but should also be of value for scientists working on dynamic complementarity problems.
Harmonic Balance for Nonlinear Vibration Problems
Author: Malte Krack
Publisher: Springer
ISBN: 3030140237
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.
Publisher: Springer
ISBN: 3030140237
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.
Stability and Convergence of Mechanical Systems with Unilateral Constraints
Author: Remco I. Leine
Publisher: Springer Science & Business Media
ISBN: 3540769757
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.
Publisher: Springer Science & Business Media
ISBN: 3540769757
Category : Technology & Engineering
Languages : en
Pages : 241
Book Description
While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book will be of interest to those working in the field of non-smooth mechanics and dynamics.
Vibration Problems ICOVP 2011
Author: Jiří Náprstek
Publisher: Springer Science & Business Media
ISBN: 9400720688
Category : Science
Languages : en
Pages : 792
Book Description
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, 2011, Prague, Czech Republic. ICOVP 2011 brings together again scientists from different backgrounds who are actively working on vibration-related problems of engineering both in theoretical and applied fields, thus facilitating a lively exchange of ideas, methods and results between the many different research areas. The aim is that reciprocal intellectual fertilization will take place and ensure a broad interdisciplinary research field. The topics, indeed, cover a wide variety of vibration-related subjects, from wave problems in solid mechanics to vibration problems related to biomechanics. The first ICOVP conference was held in 1990 at A.C. College, Jalpaiguri, India, under the co-chairmanship of Professor M.M. Banerjee and Professor P. Biswas. Since then it has been held every 2 years at various venues across the World.
Publisher: Springer Science & Business Media
ISBN: 9400720688
Category : Science
Languages : en
Pages : 792
Book Description
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, 2011, Prague, Czech Republic. ICOVP 2011 brings together again scientists from different backgrounds who are actively working on vibration-related problems of engineering both in theoretical and applied fields, thus facilitating a lively exchange of ideas, methods and results between the many different research areas. The aim is that reciprocal intellectual fertilization will take place and ensure a broad interdisciplinary research field. The topics, indeed, cover a wide variety of vibration-related subjects, from wave problems in solid mechanics to vibration problems related to biomechanics. The first ICOVP conference was held in 1990 at A.C. College, Jalpaiguri, India, under the co-chairmanship of Professor M.M. Banerjee and Professor P. Biswas. Since then it has been held every 2 years at various venues across the World.
Multibody Dynamics
Author: Krzysztof Arczewski
Publisher: Springer Science & Business Media
ISBN: 9048199719
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
The ECCOMAS Thematic Conference “Multibody Dynamics 2009” was held in Warsaw, representing the fourth edition of a series which began in Lisbon (2003), and was then continued in Madrid (2005) and Milan (2007), held under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). The conference provided a forum for exchanging ideas and results of several topics related to computational methods and applications in multibody dynamics, through the participation of 219 scientists from 27 countries, mostly from Europe but also from America and Asia. This book contains the revised and extended versions of invited conference papers, reporting on the state-of-the-art in the advances of computational multibody models, from the theoretical developments to practical engineering applications. By providing a helpful overview of the most active areas and the recent efforts of many prominent research groups in the field of multibody dynamics, this book can be highly valuable for both experienced researches who want to keep updated with the latest developments in this field and researches approaching the field for the first time.
Publisher: Springer Science & Business Media
ISBN: 9048199719
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
The ECCOMAS Thematic Conference “Multibody Dynamics 2009” was held in Warsaw, representing the fourth edition of a series which began in Lisbon (2003), and was then continued in Madrid (2005) and Milan (2007), held under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). The conference provided a forum for exchanging ideas and results of several topics related to computational methods and applications in multibody dynamics, through the participation of 219 scientists from 27 countries, mostly from Europe but also from America and Asia. This book contains the revised and extended versions of invited conference papers, reporting on the state-of-the-art in the advances of computational multibody models, from the theoretical developments to practical engineering applications. By providing a helpful overview of the most active areas and the recent efforts of many prominent research groups in the field of multibody dynamics, this book can be highly valuable for both experienced researches who want to keep updated with the latest developments in this field and researches approaching the field for the first time.
Numerical Methods for Nonsmooth Dynamical Systems
Author: Vincent Acary
Publisher: Springer Science & Business Media
ISBN: 3540753923
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.
Publisher: Springer Science & Business Media
ISBN: 3540753923
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.
IUTAM Symposium on Unilateral Multibody Contacts
Author: F. Pfeiffer
Publisher: Springer Science & Business Media
ISBN: 9401142750
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Multibody dynamics started with the ideas of Jacob and Daniel Bernoul li and later on with d'Alembert's principle. In establishing a solution for the problem of the center of oscillation for a two-mass-pendulum Jacob Ber noulli spoke about balancing the profit-and-Ioss account with respect to the motion of the two masses. Daniel Bernoulli extended these ideas to a chain pendulum and called forces not contributing to the motion "lost forces", thus being already very close to d'Alembert's principle. D'Alembert considered a "system of bodies, which are interconnected in some arbitrary way. " He suggested separating the motion into two parts, one moving, the other being at rest. In modern terms, or at least in terms being applied in engineering mechanics, this means that the forces acting on a system of bodies are split into active and passive forces. Active forces generate motion, passive forces do not; they are a result of constraints. This interpretation of d'Alembert's principle is due to Lagrange and up to now has been the basis of multi body dynamics (D' Alembert, Traite de Dynamique, 1743; Lagrange, Mecanique Analytique, 1811). Thus, multibody dynamics started in France. During the nineteenth century there were few activities in the multi body field even though industry offered plenty of possible applications and famous re presentatives of mechanics were aware of the problems related to multibody dynamics. Poisson in his "Traite de Mecanique" (Paris 1833) gave an im pressive description of these problems, including impacts and friction.
Publisher: Springer Science & Business Media
ISBN: 9401142750
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Multibody dynamics started with the ideas of Jacob and Daniel Bernoul li and later on with d'Alembert's principle. In establishing a solution for the problem of the center of oscillation for a two-mass-pendulum Jacob Ber noulli spoke about balancing the profit-and-Ioss account with respect to the motion of the two masses. Daniel Bernoulli extended these ideas to a chain pendulum and called forces not contributing to the motion "lost forces", thus being already very close to d'Alembert's principle. D'Alembert considered a "system of bodies, which are interconnected in some arbitrary way. " He suggested separating the motion into two parts, one moving, the other being at rest. In modern terms, or at least in terms being applied in engineering mechanics, this means that the forces acting on a system of bodies are split into active and passive forces. Active forces generate motion, passive forces do not; they are a result of constraints. This interpretation of d'Alembert's principle is due to Lagrange and up to now has been the basis of multi body dynamics (D' Alembert, Traite de Dynamique, 1743; Lagrange, Mecanique Analytique, 1811). Thus, multibody dynamics started in France. During the nineteenth century there were few activities in the multi body field even though industry offered plenty of possible applications and famous re presentatives of mechanics were aware of the problems related to multibody dynamics. Poisson in his "Traite de Mecanique" (Paris 1833) gave an im pressive description of these problems, including impacts and friction.